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A B S T R A C T   

Precise localization using visual sensors is a fundamental requirement in many applications, including robotics, 
augmented reality, and autonomous systems. Traditionally, the localization problem has been tackled by 
leveraging 3D-geometry registering approaches. Recently, end-to-end regressor strategies using deep convolu
tional neural networks have achieved impressive performance, but they do not achieve the same performance as 
3D structure-based methods. To some extent, this problem has been tackled by leveraging the beneficial prop
erties of sequential images or geometric constraints. However, these approaches can only achieve a slight 
improvement. In this work, we address this problem for indoor scenarios, and we argue that regressing the 
camera pose using sparse feature descriptors could significantly improve the pose regressor performance 
compared with deep single-feature-vector representation. We propose a novel approach that can directly 
consume sparse feature descriptors to regress the camera pose effectively. More importantly, we propose a 
simplistic data augmentation procedure to exploit the sparse descriptors of unseen poses, leading to a remarkable 
enhancement in the generalization performance. Lastly, we present an extensive evaluation of our method on 
publicly available indoor datasets. Our FeatLoc achieves 22% and 40% improvements in translation errors on 7- 
Scenes and 12-Scenes relatively, compared with recent state-of-the-art absolute pose regression-based ap
proaches. Our codes are released at https://github.com/ais-lab/FeatLoc.   

1. Introduction 

Precise localization techniques play an essential role in many real- 
world applications, such as intelligent systems, augmented reality ap
plications (Häne et al., 2017; Lim et al., 2015; Castle, 2008), and 
autonomous systems. Their algorithms enable us to accurately compute 
the position and orientation of a given image in a known scene. Popular 
approaches use advanced hardware, such as LIDAR sensors, GPS, WIFI, 
or Bluetooth. However, such wireless hardware sensors suffer from GPS- 
denied environments, such as bad weather conditions, blocked areas, 
and especially indoor environments. Another common solution is the 
use of inexpensive visual sensors. However, robust visual localization 
based on a single image is still challenging, especially in end-to-end 
learning approaches. 

Camera-based localization has been widely tackled by exploiting 2D- 
3D matching between a query 2D image and a given 3D map (Sattler, 
2016; Brachmann, 2017; Brachmann and Rother, 2018; Meng et al., 
2017). Traditionally, these approaches first establish 2D-3D matches 

based on matching descriptors associated with both test images and a 3D 
map. The algorithms then estimate the camera pose by applying an n- 
point-pose solver (Albl et al., 2015; Kneip et al., 2011) inside a RANSAC 
(Chum and Matas, 2008). Alternatively, the 3D point positions can be 
directly predicted by leveraging state-of-the-art machine learning re
gressors (Sattler, 2016; Brachmann, 2017; Meng et al., 2017; Meng et al., 
2018). 

In recent years, methods based on deep convolutional neural net
works (DNNs) have become popular for absolute pose regression (APR) 
(Kendall, 2015; Walch et al., 2017; Brahmbhatt, 2018; Wang et al., 
2020a,b; Purkait et al., 2018; Zhou et al., 2021). Instead of storing a 
large 3D map in memory or just using machine learning only for some 
parts of the localization pipeline (Sattler, 2016), these approaches aim to 
learn the whole pipeline of the localization task. Given a training image 
set and corresponding poses, APR approaches train DNNs to automati
cally extract features and directly recover camera poses from single 
images. The general advantages of APR approaches are the benefits of 
end-to-end training, where the camera pose can be computed directly 
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from images in real-time (less than 50 ms for pose estimation per image). 
Another advantage is low memory requirement (≈ 100 MB) for the 
network weight instead of several GB for reference 3D cloud map and 
training samples. The final re-localization system, therefore, is very 
scalable, compared to pure geometric based method (Kendall, 2015). In 
addition, the performance speed and the usage of memory are inde
pendent of number of training samples, while metric localization scales 
O(n) with training data size (Wu, 2013). Although APR techniques are 
computationally efficient, they are still significantly less accurate than 
conventional geometry-based methods (Sattler et al., 2019; Purkait 
et al., 2018), and they are restricted from generalizing beyond the 
limitation of the training data. 

In this work, we argue that regressing the camera pose using sparse 
feature descriptors can significantly improve the localization perfor
mance and allow generalization beyond the limitation of the training 
data compared with using dense feature representation approaches 
(Kendall, 2015; Wang et al., 2020a,b; Brahmbhatt, 2018). We propose 
FeatLoc, a direct end-to-end camera pose regressor from 2D sparse 
feature descriptors for indoor localization. Unlike previous methods, 
which rely on pre-trained deep feature extractors (Kendall, 2015; Walch 
et al., 2017; Wang et al., 2020a,b), our proposed FeatLoc consumes 
sparse descriptors to regress the global map, which is advantageous for 
several reasons.  

1. Learning from sparse features could make it easier for the DNN 
model to understand the underlying geometric concepts of the en
vironments, while previous direct image-based approaches have no 
built-in reasoning about geometry (Kendall, 2015; Wang et al., 
2020a,b; Brahmbhatt, 2018) during the training phase. The results 
thus are poor of ability to explore unseen poses that are different 
from training set (Sattler et al., 2019).  

2. The usage of sparse features allows the training data to be augmented 
with unseen poses, leading to substantial improvements in the 
generalization performance.  

3. Previous RGB-based methods (Kendall, 2015; Brahmbhatt, 2018; 
Wang et al., 2020a,b) spend a lot of unnecessary computation (and 
trainable parameters) on dense feature-extraction, which seems not 
necessary for this task of re-localization. In light of empirical evi
dence, pure geometry methods which rely only on 2D sparse features 
(a gold-standard such as SIFT (Lowe, 2004)) in general have better 
accuracy in pose estimation than current CNN-based approaches 
(Sattler et al., 2019). Hence, the networks used in our approach is 
significantly small and be able to train from scratch without a need of 
leveraging pre-trained classification networks.  

4. More importantly, in the later experiment results, we shown that our 
networks learned on 2D sparse feature are more robust to condition 
changing compared to recent CNN-based approaches (Kendall, 2017; 
Brahmbhatt, 2018). 

In addition, our proposed architecture is developed mainly based on 
the PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b) 
structures. Thus, it inherits the capability of learning the local context 
and multi-scale feature combination, which leads to an improvement in 
this task. Unlike SPPNet (Purkait et al., 2018), which must randomly 
regulate the sparse descriptors into a fixed 2D grid before applying the 
convolutional network, our proposed architecture can directly input the 
entire features descriptors to produce camera poses without losing 
valuable information. Fig. 1 illustrates the superior performance of our 
FeatLoc approach on an indoor chess scene from the 7-Scenes (Shotton 
et al., 2013) dataset. 

2. Related work 

2.1. Structure-based localization 

Geometry-based localization of camera pose with respect to a 3D 

environment has been well studied in the last decade (Li et al., 2010; 
Sattler, 2016; Sattler, 2011; Li, 2012). Specifically, these approaches 
rely on 2D-3D matches between 2D pixel positions and a pre-defined 3D 
point map for pose estimation. The matches can be established by 
matching the descriptors (Donoser, 2014; Li, 2012; Sarlin, 2020; Sattler, 
2016) before applying the n-point algorithm (Albl et al., 2015; Kneip 
et al., 2011) to estimate the camera poses. In the case that the underlying 
3D map is enormous, the computational cost can be greatly reduced by 
adding bag-of-features-based steps to quickly identify relevant subsets of 
the cloud points (Zhang & Kosecka, 2006). Recent efforts have 
addressed this problem by regressing 3D coordinates from pixel patches 
(Brachmann, 2017; Brachmann et al., 2016; Brachmann and Rother, 
2018) and have achieved impressive pose accuracy at a small scale. 
Nevertheless, they ultimately cover only a tiny fraction of the world. 

2.2. Deep neural networks for camera localization 

Recent works have proposed learning-based methods to estimate 
absolute camera poses of an input image (Brahmbhatt, 2018; Kendall, 
2016, 2017, 2015; Melekhov et al., 2017; Naseer and Burgard, 2017; 
Wang et al., 2020a,b; Zhou et al., 2021), thus implicitly representing the 
entire scene by the weights of the network. They all follow the same 
pipelines of a feature extractor comprising with a fully connected re
gressor (Huang et al., 2019; Kendall, 2015). The key to these methods 
lies in the image vector representation as the embedded vector, which is 
extracted using a base network, such as VGG (Simonyan & Zisserman, 
2014) or ResNet (He et al., 2016). These methods mainly differ in the 
underlying base network, or the loss function used to train the network. 
PoseNet (Kendall, 2015) was probably the first to adopt DNNs to learn 
the absolute camera pose from an input image. This approach was then 
extended by leveraging long short-term memory (LSTM) (Walch et al., 
2017) to structure embedded feature vectors, leading to a significant 
improvement. Later, localization performance was improved by using 
geometric reprojection errors (Kendall, 2017) or adding visual odometry 
constraints (Radwan et al., 2018; Valada et al., 2018). The authors of 
(Brahmbhatt, 2018; Radwan et al., 2018) proposed methods to localize 
camera poses based on sequential images, and they showed that the 

Fig. 1. Camera localization results for an indoor scene (left figure, green rep
resents ground truth and red represents the prediction) from 7-Scenes (Shotton 
et al., 2013) dataset and comparison of localization errors under the effect of 
brightness. We directly feed sparse features from a single image to a neural 
network for predicting the 6-degrees-of-freedom (DoF) pose without any need 
for pre-processing. We leverage the 3D cloud map to generate unlimited syn
thetic sparse training data to boost the relocalization performance of FeatLoc. 
The estimation results of FeatLoc are more robust under condition changing 
such as brightness (figure on the right) when compared with recent state-of-the- 
art methods (such as PoseNet (Kendall, 2015, 2017) and MapNet (Brahmbhatt, 
2018)). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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relocalization performance can be significantly improved when learning 
on these approaches. Recent efforts additionally leverage the self- 
attention module (Wang et al., 2020a,b) to automatically guide the 
feature extractor to focus on the static region of the input image, 
yielding superior global camera pose regression performance, or intro
duce a novel framework to effectively fuse multiple modalities, such as 
image and depth (Zhou et al., 2021). However, the aforementioned 
approaches are still less accurate than structure-based methods (Sattler 
et al., 2019). This is probably because of the difficulty in geometric 
reasoning or generalizing beyond the limitation of the training data. 

2.3. Feature extractors for deep camera pose regressor 

Training a deep neural network from scratch for camera pose 
regression would be impractical due to the extensive training set re
quirements (Walch et al., 2017). In addition, it seems impossible to 
collect such a massive dataset because each camera pose label is covered 
by at least one training sample, where the output of the regression task is 
continuous and infinite. Therefore, most previous APR approaches 
(Kendall, 2015; Wang et al., 2020a,b; Brahmbhatt, 2018; Kendall, 2016, 
2017; Sattler et al., 2019) utilize a pre-trained classification network 
(VGG (Simonyan & Zisserman, 2014) or ResNet (He et al., 2016)) as the 
feature extractor for this task. It will then output a high-dimensional 
feature vector, which can be seen as a feature that represents the 
image to be localized. However, this procedure of camera pose regres
sion struggles to generalize beyond the limitation of the training data. In 
contrast, utilizing feature extractors under sparse descriptors can solve 
this problem by augmenting unlimited additional training data of the 
unseen poses by simply projecting 3D-2D of local features to image plane 
(Sattler et al., 2017; Hyeon et al., 2021). In this way, SPPnet (Purkait 
et al., 2018) can achieve a superior relocalization performance 
compared with previous APR methods. 

3. Proposed approach 

6-DoF camera pose estimation utilizing geometry-based methods can 
still achieve superior performance compared with recent efforts towards 
end-to-end learning strategies (Brachmann and Rother, 2018; Meng 
et al., 2017; Walch et al., 2017). Inspired by that, our proposed approach 
relies on sparse features, as in geometry-based approaches, to regress the 
global camera pose from an input image. Instead of matching sparse key 
points to compute the global camera poses, we propose a lightweight 
regressor architecture to learn the global map from sparse feature de
scriptors. Our FeatLoc architecture can directly input the sparse features 
to estimate the absolute camera pose efficiently. In addition, it can 
automatically focus on geometrically robust features and adapt effi
ciently to simplistic synthetic data. The proposed architecture is notably 
compact while achieving state-of-the-art performance, as described in 
detail in Section 3.2. In Section 3.3, we present a simplistic data 
augmentation procedure for exploiting the sparse descriptors of unseen 
poses to enrich the FeatLoc performance. Finally, in Section 3.4, we 
compare our approach with some related works to show the improve
ments of our framework that can lead to state-of-the-art performance on 
indoor scenes. 

3.1. Problem statement 

We design a lightweight deep neural architecture to regress the 
camera pose from spare feature sets. For each timestamp t, the agent 
receives a sparse feature set P t = {di,ki|i = 1, ..,N} from image I t, 
where di is a description vector, and ki is the vector of its coordinate (x,
y) in the 2D pixel space. For simplicity, to design the network, we chose 
the descriptor dimension di ∈ R256 for all experiments. However, our 
designed network can work well under an arbitrary number of input 
descriptors and automatically focus on robust features. In contrast, other 

approaches, such as SPPNet, must randomly regulate the set of features 
on a fixed 2D regular grid before feeding them to a deep convolutional 
architecture. For the output of the regression task, our model will output 
a camera pose, which is parameterized by a 6-DoF pose [t, r]T, where t is 
a translation vector t ∈ R3 and r is a quaternion-based orientation vector 
r ∈ R4. 

Given a feature set P t extracted from image I t , our goal is not only 
to estimate the global camera pose [r, t] but also to understand of the 
change of camera pose according to the change of feature set positions. 
To achieve this, we assume that the descriptors remain invariant to a 
slight change of viewpoint. Fig. 2 shows an example of sparse feature 
positions changed under a near viewpoint. Suppose that P 1

t ,P
2
t , ...,P

M
t 

are the augmented feature sets generated based on reference feature set 
P 0

t and its visible 3D cloud points. To this end, with additional training 
data, our deep 6-DoF pose regressor F(P ) = (r, t)T can not only learn to 
avoid overfitting but can also generalize the environment well. The 
function F here is usually a DNN. 

3.2. Base architecture of FeatLoc 

This section introduces the proposed architecture of FeatLoc, a DNN 
architecture that directly consumes sparse feature key points to learn a 
global map through a monocular image set. Instead of learning directly 
from RGB images, our network learns from sparse features. Hence, the 
proposed architecture has the advantage of possible data augmentation. 
The overall architecture of FeatLoc is illustrated in Fig. 3. The FeatLoc 
model consists of an input layer, feature joining, and a regressor layer. In 
the input layer, the extracted sparse feature set P t is down-sampled to a 
fixed N samples. The whole FeatLoc architecture is mainly based on 
PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b). 

3.2.1. Feature Pre-processing: input layer 
The task of training a DNN regressor for a 6-DoF camera pose from 

scratch is impractical because the output in this regression task is 
continuous and infinite. As a solution, previous works have leveraged a 
pre-trained classification network, such as GoogLeNet (Szegedy et al., 
2015) or ResNet (Brahmbhatt, 2018), to extract the image representa
tion feature vector before localizing the camera pose. While this pro
cedure has shown some success in APR tasks, it is nevertheless limited in 
its achievable accuracy. Therefore, it is questionable whether these 
feature extractors are the best choice for the pose regression task. 
Human beings utilize key points to localize their position. In addition, 
classical geometric methods can precisely measure the query image’s 
location by exploring the key points of the image. Inspired by this, our 
work uses the feature key points of images as representatives to be 
localized. 

Here, we utilize the SuperPoint architecture (DeTone, 2018) as a 
base key point feature extractor. We select the SuperPoint model for the 
following reasons: (1) it is one of the most powerful deep feature 

Fig. 2. An example of synthesized sparse descriptors (right) when changing the 
viewpoints for the challenging 7-Scenes dataset (Shotton et al., 2013). We 
leverage the 3D cloud map generated from training image samples to synthesize 
unseen viewpoints. The augmentation result on the right was generated by 
reprojecting the features from the reference image on the left. 
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extractors compared in terms of localization error and repeatability (Luo 
et al., 2020; Sarlin, 2020). (2) SuperPoint is available to be implemented 
for generating 3D cloud maps in hloc toolbox (Sarlin et al., 2019), which 
gives us a straightforward way to produce additional sparse descriptor 
data as the central part of this work. 

3.2.2. Feature joining layer 
Feature representation plays a crucial role in achieving accurate 

relocalization (Kendall, 2015; Walch et al., 2017). Here, each key point 
has two essential factors: the descriptor and key point position. This 
section discusses our feature joining layer, where the key point position 
and its descriptor will jointly learn to output a united independent 
vector. The obtained feature vectors are then extended to a higher 
dimensional space before applying the max-pooling layer to obtain the 
final feature to be localized. 

Existing literature (Qi et al., 2017a; Zheng et al., 2019) has proved 
that the combination of feature extension and max-pooling layers, such 
as in PointNet, can identify critical points. Therefore, this is a desirable 
choice for our regression task. Initially, the 2D key point locations k will 
be encoded into 256 dimensions, the same as the descriptor dimension, 
using multi-layer perceptron (MLP) before combining with its 
descriptor. This encoder is illustrated as the E1 block in Fig. 3. The whole 
encoding process can be described as. 

xi = di +MPL(ki) (1) 

The encoding of key point positions will later help the model gain 
more information about the camera pose. It also shows a distinct feature 
between two near-camera poses. The second part of the feature joining 
layer is developed mainly based on the PointNet structure. 

In particular, PointNet exploits the MLP layer, max-pooling layer, 
and feature transformation to approximate a permutation-invariant 
function for point cloud data. Here, we only inherit the combination 
between the max-pooling and multi-perceptron function for our locali
zation task. In general, it is a universal continuous set function 
approximator applied on orderless sets. The idea can be described as. 

f ({x1,⋯, xn}) ≈ g(h(x1),⋯, h(xn)) (2)  

where f : 2RN →R, h : RN→RK, and g : RK × ⋯RK
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅ ⏟

n

→R is a symmetric 

function. 
This technique is a relatively simple but efficient way to capture the 

different properties of the input set. In particular, h is approximated by 
MLP, and g is a symmetric function, which is the max-pooling function in 
this case. h is the encoder block E2 of our proposed architecture in Fig. 3. 

In addition, our later experiments show that replacing the feature 
encoder with a multi-scale grouping set abstraction layer in the 
PointNet++ architecture (Qi et al., 2017b) can lead to a substantial 
improvement in terms of learning with additional synthetic data Fig. 4 
shows the proposed FeatLoc++ architecture, where the MSG-SA layer 
replaces the combination of encoder E1 and descriptor. Here, the SA 
layer is composed of a sampling layer, grouping layer, and PointNet 
layer (Qi et al., 2017a). The SA layer takes a feature matrix F ∈ RN×C as 
input and outputs a new feature matrix F′

∈ RN′
×C′

, where N and N′ are 
the numbers of input and the output sparse features, and C and C′ are the 
input and output feature dimensions, respectively. The multi-scale 
grouping strategy adopts farthest point sampling to sample N′ regions 
with each region center as xj; then, for each region (defined by a 
neighborhood of radius r), it utilizes the following symmetric function to 
extract its local feature (Liu et al., 2019): 

F’
j = MAX{i|‖xi − xj≤r‖}

{
h
(
Fi, xi − xj

)}
(3)  

where Fi is the ith row of F, Fj is the jth row of F’, h : RC→RC’ is the MLP, 
and MAX is the max pooling layer (Wang et al., 2020a,b). 

In this work, we experiment with three variants of FeatLoc: FeatLoc, 
FeatLoc+, and FeatLoc++. FeatLoc and FeatLoc+ have the same 
structural components as illustrated in Fig. 3, where FeatLoc+ is 
modified by adding additional hidden layers in the encoder E1, E2, and 
the regressor layer. In FeatLoc++, the encoder block E1 of the feature 
joining layer is replaced with a multi-scale grouping set abstraction, as 
seen in Fig. 4. 

3.2.3. Regressor block and loss function 
This section describes the regressor block and loss function we used 

to train the architecture. The regressor layer consists of a sequence of 
fully connected layers, which consume the obtained feature vector from 
the former feature joining block to estimate the 6-DoF pose [̂t, r̂]. 

Given a feature set P extracted from image I and its corresponding 
pose label [̂t, r̂], our network predicts the 6-DoF camera pose as two 
disjoint vectors. The output vector consists of a camera position t ∈ R3 

and camera orientation r ∈ R4 in quaternion form. 
We follow (Kendall, 2016) in the choice of objective function. The 

parameters inside the neural network are optimized using L1 loss ac
cording to the following function: 

loss(θ) =
⃦
⃦t − t‖1e− β + β+

⃦
⃦logr − logr̂‖1e− γ + γ (4)  

where β and γ are the weights used to balance the learning losses be

Fig. 3. Architecture of FeatLoc. It consists of an input layer, feature joining, and a pose regressor. The input layer is composed of a feature extractor (can be either a 
traditional or deep feature extractor, such as SIFT (Juan and Gwun, 2009) or SuperPoint (Sarlin, 2020). The extracted features are sent to the feature joining layer for 
registering feature positions and their descriptor into a united feature vector. Finally, the regressor layer regresses the 6-DoF camera poses using the united feature 
vector as the input. 
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tween position and orientation; for all scenes, β and γ are simultaneously 
learned during the training period from their initial values of β0 and γ0, 
respectively. logr is the logarithmic form of quaternion r, which is 
defined as. 

logr =

⎧
⎨

⎩

v
‖v‖

cos− 1u, if ‖v‖ ∕= 0

0, otherwise
(5)  

where r = (u, v), u is a real scalar part, and v is a 3D vector of the 
imaginary part. This parameterization of camera orientation as the 
logarithm of a quaternion unit can map any rotations in 3D space 
uniquely because the quaternion itself is not unique. In practice, both 
− r and r are represented as the same rotation because two hemispheres 
can be used to represent a single rotation. In addition, the logarithmic 
parameterization of the rotation parameter showed a better perfor
mance than learning from the original 4D quaternion (Wang et al., 
2020a,b). Thus, all experiments used the logarithm of quaternions to 
ensure all rotations are restricted to the same hemisphere. 

3.3. Data augmentation 

Training a deep neural network requires a large number of training 
samples (Krizhevsky et al., 2012), especially in the task of camera pose 
regression (Sattler et al., 2019), where the camera pose labels are in a 
continuous domain. To solve this problem, we propose a simple 
augmentation approach to synthesize more training data. Our FeatLoc 
model can thus learn to generalize beyond the limitation of the training 
data. 

The general approaches for augmenting data for image classification 
include image distortions, cropping, rotation, and color changing. 
Because applying these methods to the training data does not affect the 
class label, it thus enriches the DNN model with new unseen data. In our 
case, however, these traditional distortion approaches cannot be applied 
as they would affect the camera pose. Therefore, we leverage the 3D 
cloud map generated based on SfM toolboxes using the training samples. 
Our augmented method is inspired by previous work (Purkait et al., 
2018; Irschara et al., 2009); thus, the following strategy is generally 
similar to that of (Purkait et al., 2018). However, the synthesis strategy 
of this work is much simpler compared with (Purkait et al., 2018). 

Given a 3D cloud map D , a training dataset T , and the intrinsic 
camera parameter c of the dataset, where D consists of k different cloud 
point sets Di, T consists of k different feature sets P i and 6-DoF camera 
pose Ti. k is the number of image samples in the training dataset. The 
camera model in this work is assumed to be a pinhole camera; thus, the 
relationship between a 3D cloud point p = (x, y, z)T

∈ R3, p ∈ D and a 

2D pixel position x = (i, j)T
∈ R2 is as follows: 

π(x, y, z)T
=

(
fxx
z
+ cx,

fyy
z
+ cy

)

= (i, j)T (6)  

where fx, fy and cx, cy refer to the focal length and optical center of the 
camera, respectively. Here, we represent the 6-DoF camera pose using 
transformation matrix T. The transformation matrix set is also known as 
the special Euclidean group. 

SE(3) =
{

T =

[
R t
0T 1

]

∈ R4×4
⃒
⃒
⃒
⃒R ∈ SO(3), t ∈ R3

}

(7) 

For each training sample {P i,Ti}, we randomly synthesize 50 rela
tive poses Tij based on the original camera pose Ti, where the trans
lations and orientations of Tij are chosen uniformly within the ranges of 
[ − α,+α] and [ − d, + d], respectively. 

Assume that αx,αy, and αz are roll, pitch, and yaw counterclockwise 

Fig. 4. Architecture of FeatLoc++. The main components are the same as those of FeatLoc, which includes an input layer, feature joining, and a pose regressor. The 
new structure’s only change is in the feature joining layer, where the encoder E1 is replaced with a multi-scale grouping (MSG) set abstraction (SA) module. 
FeatLoc++ can adaptively learn to combine features from multiple scales and capture the local context of additional synthetic training samples with this 
replacement. 
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rotations, respectively, which are chosen randomly within the range of 
[ − α, + α], and tx, ty, and tz are the shifts along all directions, which are 
also chosen randomly from the interval [ − d, + d]. This random process 
is illustrated in line 4 of Algorithm 1, where the relative camera pose Tij 

will be calculated based on translation vector tij = (tx, ty, tx)T and the 
random shifts of αx,αy,αz. The new synthesized camera pose can thus be 
described as follows: 

Twj = TwiTij (8)  

where the Twi and Twj are the reference and synthesized camera co
ordinates in the world coordinate system, respectively. Tij is the relative 
transformation matrix between reference and synthesized camera pose, 
computed as follows: 

Tij =

[
Rij tij
0T 1

]

(9)  

Rij = Rx(αx)Ry
(
αy
)
Rz(αz) (10)  

Rx(αx) =

⎡

⎣
1 0 0
0 cosαx − sinαx
0 sinαx cosαx

⎤

⎦ (11)  

Ry
(
αy
)
=

⎡

⎣
cosαy 0 sinαy

0 1 0
− sinαy 0 cosαy

⎤

⎦ (12)  

Rz(αz) =

⎡

⎣
cosαz − sinαz 0
sinαz cosαz 0

0 0 1

⎤

⎦ (13) 

This gives us the new pose labels for the synthetic viewpoints. To 
generate the synthetic key points of the new pose labels, we use Eq. (6) 
to reproject the 3D cloud points Di to the new synthesized camera plane 
based on its coordinate system. Note that before reprojecting, we 
convert all related point cloud coordinates to the new coordinate sys
tems of the synthetic poses. Once the reprojection process is done, we 
remove all invalid reprojected key points, which are those not in front of 
the camera, using the threshold parameter, which defines the minimum 
number of valid reprojected key points. We then discard entire synthetic 
ones if the number of valid reprojected points is less than the threshold. 
Finally, the valid feature descriptors are copied corresponding to its 
original feature set P i. Note that none of the prior knowledge of testing 
data is exploited during augmentation. The algorithm 1 summarizes the 
whole above process. 

3.4. Comparisons to related work 

The FeatLoc architecture is developed mainly based on the PointNet 
(Qi et al., 2017a) and PointNet++ (Qi et al., 2017b) structures. FeatLoc 
inherits the critical-points theory of the PointNet structure; thus, Feat
Loc can learn to use the collection of critical key points. Unlike other 
deep pose regression approaches, which cannot synthesize additional 
data from existing training samples, our approach regresses the camera 
poses from sparse features descriptors. The performance can thus be 
significantly enhanced due to the addition of synthetic training samples. 
In addition, in the test time, the trained network can work well with the 
independent number of input descriptors, while other sparse feature 
regressor approaches (Purkait et al., 2018) require some pre-processing 
steps before localizing the image location. 

FeatLoc vs. SPPNet (Purkait et al., 2018): FeatLoc can jointly learn 
the position and appearance of every sparse descriptor. This makes the 
FeatLoc descriptor independent of all extracted key points, making it 
feasible to apply critical-points theory (Qi et al., 2017a). The model is 
thus flexible to consume a different number of sparse descriptors and 
automatically capture the valuable descriptors. Moreover, SPPnet must 

randomly regulate the sparse descriptors into a fixed 2D grid before 
applying the convolutional layer. However, this random process renders 
data unnecessarily grid-like, which could cause issues or discard 
important information. Regarding the augmentation method, our 
approach is simpler to implement. We only use the information from 
reference images to generate the synthetic data, while in SPPNet, each 
synthetic image must use all 3D key points, leading to a time-consuming 
augmentation process. 

FeatLoc vs. MapNet (Brahmbhatt, 2018): MapNet leverages the 
valuable properties of image sequences during the learning period to 
enhance the performance of camera relocalization. However, it still 
struggles to generalize beyond the training data or might not generalize 
at all (Sattler et al., 2019). We believe that with sufficient training 
samples from the environment, end-to-end pose regressor approaches 
can close this gap and will become practically relevant. Here, our 
FeatLoc can provide additional training data by learning from sparse 
features. Further, training FeatLoc does not require sequential images, 
leading to the more straightforward data collection. 

4. Experimental evaluation 

In this section, we discuss the different evaluation aspects of our 
approach on a small-scale indoor dataset to show the robustness of our 
approach in indoor scenarios and compare the obtained results to those 
of state-of-the-art methods. 

4.1. Implementation details 

We implemented our algorithm with Pytorch (Ketkar, 2017) using 
the ADAM optimizer (Kingma & Ba, 2014). We set the initial learning 
rate to 6e-4 with a weight decay of 5e-4. The mini-batch size was 86, and 
the weight initialization was β0 = − 3.0 and γ0 = − 3.0. All experiments 
were conducted on two NVIDIA GTX 1080ti GPUs, where FeatLoc++

requires approximately 5 ms to run on time. We used the same param
eter settings of FeatLoc when evaluating with a different number of 
sparse features. Following the convention of previous works (Kendall, 
2015, 2016; Walch et al., 2017; Wang et al., 2020a,b; Purkait et al., 
2018), we computed the median error for both translation and orien
tation. We report the orientation errors in degrees and positional errors 
in meters. Each data setting was trained for 200 epochs. 

The parameter settings of FeatLoc and FeatLoc++ are listed in 
Table 1 and Table 2. The initial FeatLoc architecture is rather simple 
compared to that of FeatLoc++. A comparison among different numbers 
of parameters can also be found in Table 3. 

4.2. Dataset description and pre-processing 

We evaluated our proposed approach on the 7-Scenes (Shotton et al., 
2013) and the 12-Scenes (Valentin, 2016) public indoor benchmark 
datasets to verify the robustness of our approach in indoor scenarios. 
The 7-Scenes dataset consists of multi-sequence RGB-D images, where 
the spatial extent is less than 4 m. The Kinect sensor was used to capture 
the image sequences, and the ground truths of the camera poses were 
recorded using KinectFusion. The 12-Scenes dataset is very similar to 7- 

Table 1 
Parameter settings for FeatLoc architecture.  

Feature Joining 

Layer Name Feature dimension 

MPL encoder 1 (E1) [2, 32, 64, 128, 256] 
MPL encoder 2 (E2) [256, 2048] 
Pose Regressor 
FC1 + LeakyReLu [2048, 40] 
FC2 [40, 3] 
FC3 [40, 3]  
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Scenes but has much larger indoor spaces. 
To train our proposed network on different scenes of the datasets, we 

leveraged the Hloc (Sarlin et al., 2019) toolbox to collect the training 
data under sparse feature format. Hloc is a well-known modular toolbox 
for state-of-the-art 6-DoF visual localization based on sparse features. It 
implements hierarchical localization (Sarlin et al., 2019), leveraging 
image retrieval and feature matching to localize accurate monocular 
query images. We used Hloc for both extracting the feature descriptors 
and constructing the 3D cloud map from image training samples. 

To create the 3D cloud map and sparse features, SuperPoint (DeTone, 
2018) and SuperGlue (Sarlin, 2020) were set as the default feature 
extractor and matcher, relatively. The maximum number of features 
extracted using SuperPoint was set as 2048. This process extracted the 
sparse descriptors of both training and testing images. Note that Hloc 
only uses the training images to generate the 3D cloud map while 
extracting the features of test images for later evaluation. 

4.3. Baselines 

To validate the performance of our proposed FeatLoc, we compared 
it with several state-of-the-art learning-based visual localization 
methods. Because the 7-Scenes dataset has recently been evaluated 
extensively as a benchmark (Kendall, 2015, 2016; Wang et al., 2020a,b; 
Kendall, 2017; Brahmbhatt, 2018), comparing our method with those 
prior state-of-the-art methods using the 7-Scenes dataset was an ideal 
choice. We chose the following mainstream single-image-based methods 
as our baselines: PoseNet Spatial-LSTM (Walch et al., 2017), AtLoc 
(Wang et al., 2020a,b), MapNet (Brahmbhatt, 2018). It is worth 
mentioning that SPPNet (Purkait et al., 2018) is the only DNN-based 
approach, which learns from sparse features, as our method does. We 
also report the performance of MapNet+ (Brahmbhatt, 2018), the state- 
of-the-art method on this dataset using sequential image-based relocal
ization. Note that the sequential image-based approaches generally 
perform better than single-image-based method. We nevertheless still 
compare our approach with MapNet+ to examine how accurate our 
FeatLoc learning is on single-image-based and augmented data. Lastly, 
we report the performance of traditional metric localization on this 
dataset compared with that of regressor-based approaches. We used two 

state-of-the-art methods of feature extractor and feature matching, 
which are SuperPoint (DeTone, 2018) and SuperGlue (Sarlin, 2020), to 
produce the comparing results. 

4.4. FeatLoc verification 

This section verifies the FeatLoc architecture on learning with 
different numbers of sparse descriptors to show its effects on perfor
mance. The sparse features obtained from the Hloc toolbox are then 
separated into six different train-test datasets. Each dataset will have 
different numbers of features as follows: 68, 126, 256, 512, 1024, and 
2048. To refine a lower number of features in each dataset, we leveraged 
the score values, which are the output of the SuperPoint feature 
extractor. This score represents the evaluation of each detected key 
point, ranging between 0 and 1, where a higher score represents a better 
key point. Fig. 5 illustrates different number of key points after filtering 
following the score values. The image example is taken from the third 
sequence of the Chess dataset. 

Table 4 shows the change of FeatLoc performance on those datasets. 
It is clear that the performance of the regressor notably increases when 
the number of input features increases. Interestingly, the dataset with 
fewer features filtered with better scores has lower performance than 
others. As seen from Table 4, the best relocalization results were ob
tained with the highest number of features, which is 2048. In Table 5, we 
compare results of our FeatLoc with SPPNet (Purkait et al., 2018) when 
learning on only training data. SPPNet also consumes sparse features for 
its pose regression task. Our base architecture significantly out
performed SPPNet in this scenario. This reveals that the proposed 
FeatLoc approach can effectively learn meaningful features from a set of 
sparse descriptors for relocalization. 

4.5. Learning with synthetic data 

In this section, we present our experiment results on learning with 
additional synthetic data. For the scenes with lower volumes, such as 
Fire and Heads (2.5m3 and 1m3 respectively) we used the following 
parameters to synthesize new viewpoints: d = 0.3m, α = 10, and 
threshold = 1200. With the remaining scenes, we simply increased d to 
d = 0.5m. Because our augmentation approach is much simpler 
compared with that of SPPNet (Purkait et al., 2018) approach. It took 
only approximately 8 min for a sequence of 1000 training samples, while 
SPPNet required approximately two hours. Separately, generating a 3D 
cloud map costs about 18 min for a sequence of 1000 images of 480x640 
size. Note that all remaining experiments used the number key points set 
as 2048. 

Initially, we evaluated our base lightweight FeatLoc architecture 
with only 0.7 million parameters on learning with both training and 
synthetic data. However, the base FeatLoc faces overfitting when 
learning with extensive additional data. This could be due to the 
simplicity of this architecture. We thus increased the architecture 
weights to 2.5 million parameters, as shown in Table 6 in detail. We call 
this architecture FeatLoc+. We illustrate the results of FeatLoc (learning 
with only training data) and FeatLoc+ (learning with both types of 
data), which were evaluated on the most difficult scene, Stairs, in Fig. 6. 
It can be seen that the improvement of FeatLoc+ (+augmentation) 
compared with the base FeatLoc is not significant. The reason for this is 
likely that FeatLoc’s base appears to not be very powerful in capturing 
the local context of the synthetic data. To resolve this problem, we 
replaced the encoder block E1 of the feature joining layer with a multi- 
scale grouping set abstraction layer, which is the original in PointNet++

(Qi et al., 2017b). We call this improved architecture FeatLoc++.Fig. 6 
also illustrates the results of FeatLoc++ when learning with both 
training and synthetic data on the Stairs dataset. The results show that 
FeatLoc++ adaptively learned to combine features from multi-scale 
local contexts, thus leading to a significant improvement. Table 7 re
ports entire results of three FeatLoc variants when learning with and 

Table 2 
Parameter settings for FeatLoc++ architecture.  

Feature Joining 

MSG SA setting name Setting 

Number output points 1024 
Radius [0.025, 0.05, 0.1] 
Number samples [32, 16, 8] 
MPLs [[256, 64, 64, 128], [256, 128, 128,256], 

[256, 128, 128,256]] 
Layer Name Feature dimension 
MPL encoder 2 (E2) [740, 2048] 
Pose Regressor 
FC1 + LeakyReLu [2048, 512] 
FC2 + LeakyReLu [512, 256] 
FC3 + LeakyReLu [256, 40] 
FC2 [40, 3] 
FC3 [40, 3]  

Table 3 
Comparison of the numbers of parameters (Note that SuperPoint (DeTone, 2018) 
costs about 1.3 M parameters).  

Method #param 

SuperPoint (DeTone, 2018)& FeatLoc 2.0 M 
SuperPoint (DeTone, 2018)& FeatLoc+ 3.8 M 
SuperPoint (DeTone, 2018)& FeatLoc++ 4.1 M 
Original PoseNet (GoogleNet) (Kendall, 2015) 8.9 M 
Baseline (ResNet50) (Laskar, Melekhov, Kalia, & Kannala, 2017) 26.5 M  
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without augmented data. 
Finally, we compare our results of the FeatLoc++ architecture on all 

seven scenes when learning with additional synthetic data with recent 
state-of-the-art APR-based methods. The comparison results are listed in 
Table 8, where FeatLoc++ significantly outperformed these APR-based 
baselines. 

4.6. Evaluation on 12-Scenes Dataset 

In this section, we focus on localization on a larger indoor space, for 
which we use a publicly available 12-Scenes dataset (Valentin, 2016). 
This dataset was only used by DSAC++ (Brachmann, 2021) leading to a 
lack of APR baselines for comparison. To solve this issue, we evaluate 
this dataset with two recent state-of-the-art APR approaches PoseNet17 
(Kendall, 2017) and MapNet (Brahmbhatt, 2018) as the baselines for 
comparison with our FeatLoc. When training PoseNet17 and MapNet, 
we set up the same configuration as illustrated in (Brahmbhatt, 2018). 
Here, we only evaluate our best variant of FeatLoc, which is FeatLoc++. 
The configuration for training FeatLoc++ was set as the same as above, 
while the augmentation parameters are set as d = 0.5, α = 10, and 
threshold = 1200. We also provide localization results of state-of-the-art 
metric-based method (SuperPoint + SuperGlue) on this dataset. The 
results in Table 9 show that we outperform previous APR-based ap
proaches by 40% in positional error and 14% in orientation error in 
general. Fig. 7 shows the camera trajectories for several testing se
quences from the 12-Scenes dataset for MapNet and FeatLoc++Au (Au 
means learning with augmented data, No means learning with only 
training data). These experiment results validate the state-of-the-art of 
our proposed FeatLoc as an effort to avoid overfitting for indoor APR 
strategies. 

5. Ablation study and efficiency evaluation 

We conduct an ablation study on the FeatLoc results to examine how 
robust they are when operating under changing conditions. We also 
report the efficiency of the proposed method in two factors of storage 
requirements and running time compared with that of related works. 

Fig. 5. Illustration on different number of feature key points on the Chess scene dataset, where the fewer features are filtered with better scores.  

Table 4 
Comparison of the effect of number of feature points on the errors when learning 
on the 7-Scenes dataset.  

Number of 
features 

68 126 256 512 1024 2048 

Chess 0.29 m, 
11.6◦

0.36 m, 
10.1◦

0.20 m, 
8.21◦

0.18 m, 
7.64◦

0.17 m, 
7.45◦

0.16 m, 
6.45◦

Fire 0.45 m, 
16.5◦

0.40 m, 
16.4◦

0.39 m, 
14.4◦

0.37 m, 
14.3◦

0.36 m, 
14.7◦

0.36 m, 
15.6◦

Heads 0.23 m, 
16.4◦

0.19 m, 
16.0◦

0.20 m, 
15.1◦

0.19 m, 
15.1◦

0.17 m, 
14.6◦

0.17 m, 
14.4◦

Office 0.42 m, 
17.2◦

0.35 m, 
14.5◦

0.31 m, 
12.9◦

0.29 m, 
11.3◦

0.26 m, 
11.1◦

0.25 m, 
10.3◦

Pumpkin 0.41 m, 
12.5◦

0.35 m, 
9.95◦

0.32 m, 
8.44◦

0.28 m, 
8.29◦

0.26 m, 
8.21◦

0.24 m, 
7.64◦

RedKitchen 0.53 m, 
16.2◦

0.47 m, 
13.7◦

0.42 m, 
12.3◦

0.38 m, 
10.8◦

0.34 m, 
9.96◦

0.31 m, 
8.91◦

Stairs 0.46 m, 
14.7◦

0.44 m, 
11.8◦

0.40 m, 
10.6◦

0.38 m, 
12.2◦

0.36 m, 
12.6◦

0.33 m, 
11.7◦

Average error 0.40 m, 
15.0◦

0.37 m, 
13.1◦

0.32 m, 
11.7◦

0.30 m, 
11.4◦

0.27 m, 
11.2◦

0.26 m, 
10.7◦

Table 5 
Comparison with SPP-Net in terms of median localization error when learning 
with no augmented data on 7-Scenes dataset.  

Scene SPP-Net FeatLoc (ours) 

Chess 0.22m,7.61◦ 0.16 m, 6.45◦

Fire 0.37 m, 14.1◦ 0.36 m, 15.6◦

Heads 0.22m,14.6◦ 0.17 m, 14.4◦

Office 0.32 m, 10.0◦ 0.25 m, 10.3◦

Pumpkin 0.47m,10.2◦ 0.24 m, 7.64◦

RedKitchen 0.34m,11.3◦ 0.31 m, 8.91◦

Stairs 0.40m,13.2◦ 0.33 m, 11.7◦

Average 0.33m,11.6◦ 0.26 m, 10.7◦

Table 6 
Parameter settings for FeatLoc + architecture.  

Layer Name Feature dimension 

MPL encoder 1 (E1) [2, 32, 64, 128, 256] 
MPL encoder 2 (E2) [256, 512, 2048] 
FC1 + LeakyReLu [2048, 512] 
FC2 + LeakyReLu [512, 256] 
FC2 + LeakyReLu [256, 40] 
FC2 [40, 3] 
FC3 [40, 3]  
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Finally, we provide an additional analysis of our method on an outdoor 
dataset to understand how outdoor properties affect the proposed 
method. 

5.1. Changing testing condition 

We evaluate two models of FeatLoc: FeatLoc++No and Feat
Loc++Au. Following the localization results in Table 8, we selected the 
chess scene for this evaluation, since it has the localization error that is 
nearly same as that of MapNet results (Brahmbhatt, 2018). 

Effect of Brightness. Here we study the effect of brightness more 

carefully by varying its magnitude. We expected that our models which 
were learned on sparse features should be more robust compared to that 
of direct-image-based approaches. To test this hypothesis, we linearly 
interpolate between clean images (degree of brightness = 0) and more or 
less brightness images (degree of brightness = 120 or − 120). Note that 
this change of image was made before extracting 2D sparse features. 
Fig. 8 illustrates the comparison results of our approach with recent 
state-of-the-art methods on increasing degree of brightness. Fig. 9 also 
shows that of results but decreasing brightness degree. Results shown in 
these figures illustrate that our models are more robust to brightness 
change compared with that of direct-RGB learning methods, even with 
FeatLoc++No (model of learning without augmentation data). 

Effect of Shadow Noise. To solid the results above, we study one 
more noise type “shadow noise”. We randomly create shadow noise on 
some parts of testing images. We then linearly interpolate between clean 
images and completely shadow noise in testing images (transparency of 
shadow ranges from 0.0 to 0.8 as shown in Fig. 10). Fig. 10 shows results 
under changing shadow noise transparency. FeatLoc++ models achieve 
more stable results than that of PoseNet (Kendall, 2017) and MapNet 
(Brahmbhatt, 2018) under this type of noise. 

5.2. System efficiency 

To evaluate the efficiency of our proposed FeatLoc we analyze two 
factors of storage requirement and running time. We compared FeatLoc 
with traditional metric localization method (SuperPoint (DeTone, 2018) 
Structure from Motion - SfM) and regressor-based method (MapNet 
(Brahmbhatt, 2018)). 

Storage Requirements. We report the storage requirements for each 
method with respect to 7-Scenes dataset in the Table 10. The results 
show that our method is more efficient in terms of memory re
quirements. It is very scalable and independent with both number of 

Fig. 6. Camera localization results on the Stairs scene in the 7-Scenes dataset (Shotton et al., 2013). For each subfigure, the top 3D plot shows the camera trajectory 
(green represents ground truth and red represents prediction), and the bottom bar charts show the comparison of location and orientation errors among MatNet 
(Brahmbhatt, 2018) and our FeatLoc, FeatLoc+, and FeatLoc++. All results were obtained from single images, where FeatLoc results were obtained with only 
training samples, while FeatLoc + and FeatLoc++ were trained on both training and augmented data. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table 7 
Comparison results of three FeatLoc versions when learning with and without 
augmented data.   

FeatLoc FeatLoc+ FeatLoc++

Chess 0.16 m, 6.45◦ 0.15 m, 6.62◦ 0.11 m, 7.56◦

Fire 0.36 m, 15.6◦ 0.38 m, 14.4◦ 0.32 m, 16.2◦

Heads 0.17 m, 14.4◦ 0.17 m, 15.0◦ 0.16 m, 15.7◦

Office 0.25 m, 10.3◦ 0.25 m, 9.19◦ 0.23 m, 10.6◦

Pumpkin 0.24 m, 7.64◦ 0.25 m, 8.53◦ 0.30 m, 8.90◦

RedKitchen 0.31 m, 8.91◦ 0.29 m, 9.05◦ 0.27 m, 11.2◦

Stairs 0.33 m, 11.7◦ 0.30 m, 12.7◦ 0.33 m, 12.1◦

Average error 0.26 m, 10.7◦ 0.26 m, 10.8◦ 24.6 m, 11.7◦

FeatLoc Au FeatLoc + Au FeatLoc++Au 
Chess 0.21 m, 8.03◦ 0.21 m, 8.03◦ 0.07 m, 3.66◦

Fire 0.48 m, 11.9◦ 0.24 m, 8.22◦ 0.17 m, 5.95◦

Heads 0.20 m, 11.6◦ 0.14 m, 11.1◦ 0.10 m, 7.57◦

Office 0.29 m, 9.59◦ 0.26 m, 6.77◦ 0.16 m, 5.20◦

Pumpkin 0.14 m, 11.1◦ 0.22 m, 5.11◦ 0.11 m, 3.86◦

RedKitchen 0.36 m, 9.07◦ 0.31 m, 7.02◦ 0.20 m, 6.43◦

Stairs 0.37 m, 13.0◦ 0.25 m, 12.0◦ 0.16 m, 8.57◦

Average error 0.32 m, 9.90◦ 0.22 m, 7.85◦ 0.14 m, 5.89◦

T.B. Bach et al.                                                                                                                                                                                                                                  



ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

59

training samples and area of environments. In contrast, the metric 
localization method requires a dramatic increase of memory alongside 
with the increase of data size. 

Running time. To evaluate this factor of efficiency, we analyze three 
methods, our FeatLoc, MapNet (Brahmbhatt, 2018) and metric locali
zation method. Along with these methods, MapNet requires about 9.4 
ms to compute camera pose for a single image. Our FeatLoc++

consumes approximately 5 ms per frame from the 2D sparse feature (in 
total it consumes around 14 ms, since extracting feature using Super
Point already takes 9 ms for the image size of 480x640). In contrast to 
regressor-based methods, the metric localization approach requires 
minutes to compute each camera pose and the running time scales O (n)
with training data size (Wu, 2013; Kendall, 2015), as it needs to process 
many additional steps before the camera poses being computed, such as 

Table 8 
Comparison of median localization errors with existing APR-based and metric localization approach on 7-Scenes dataset.    

Metric-based APR-based   
SuperPoint (DeTone, 
2018)      

Scene Area or 
Volume 

+SuperGlue (Sarlin, 
2020) 

MapNet (Brahmbhatt, 
2018) 

MapNet+ (Brahmbhatt, 
2018) 

AtLoc (Wang et al., 
2020a,b) 

SPP-Net (Purkait 
et al., 2018) 

FeatLoc++Au 
(ours) 

Chess 6 m3 0.02 m, 0.84◦ 0.08 m, 3.25◦ 0.10 m, 3.17◦ 0.10 m, 4.07◦ 0.12 m, 4.42◦ 0.07 m, 3.66◦

Fire 2.5 m3 0.02 m, 0.93◦ 0.27 m, 11.7◦ 0.20 m, 9.04◦ 0.25 m, 11.4◦ 0.22 m, 8.84◦ 0.17 m, 5.95◦

Heads 1 m3 0.01 m, 0.74◦ 0.18 m, 13.2◦ 0.13 m, 11.1◦ 0.16 m, 11.8◦ 0.11 m, 8.33◦ 0.10 m, 7.57◦

Office 7.5 m3 0.03 m, 0.92◦ 0.17 m, 5.15◦ 0.18 m, 5.38◦ 0.17 m, 5.34◦ 0.16 m, 4.99◦ 0.16 m, 5.20◦

Pumpkin 5 m3 0.05 m, 1.27◦ 0.22 m, 4.02◦ 0.19 m, 3.92◦ 0.21 m, 4.37◦ 0.21 m, 4.89◦ 0.11 m, 3.86◦

RedKitchen 18 m3 0.05 m, 1.40◦ 0.23 m, 4.93◦ 0.20 m, 5.01◦ 0.23 m, 5.42◦ 0.21 m, 4.76◦ 0.20 m, 6.43◦

Stairs 7.5 m3 0.05 m, 1.57◦ 0.30 m, 12.1◦ 0.30 m, 13.4◦ 0.26 m, 10.5◦ 0.22 m, 7.17◦ 0.16 m, 8.57◦

Average 6.8 m3 0.03 m, 1.09◦ 0.21 m, 7.77◦ 0.19 m, 7.29◦ 0.20 m, 7.56◦ 0.18 m, 6.20◦ 0.14 m, 5.89◦

Table 9 
Comparison of median localization errors with existing APR-based and metric localization approach on 12-Scenes dataset.    

Metric-based APR-based   
SuperPoint (DeTone, 2018)     

Scene Area or Volume +SuperGlue (Sarlin, 2020) PoseNet (Kendall, 2017) MapNet (Brahmbhatt, 2018) FeatLoc++No 
(ours) 

FeatLoc++Au 
(ours) 

apt1_kitchen 33 m ◦ 0.02 m, 0.20◦ 0.62 m, 6.75◦ 0.48 m, 5.28◦ 0.53 m, 14.0◦ 0.32 m, 5.19◦

apt1_living 30 m3 0.02 m, 0.18◦ 0.61 m, 6.03◦ 0.50 m, 4.84◦ 0.55 m, 9.75◦ 0.26 m, 3.89◦

apt2_bed 14 m3 0.02 m, 0.29◦ 0.65 m, 5.66◦ 0.58 m, 6.02◦ 0.60 m, 10.2◦ 0.37 m, 5.39◦

apt2_kitchen 21 m3 0.05 m, 0.20◦ 1.24 m, 6.84◦ 1.18 m, 6.18◦ 1.21 m, 29.1◦ 0.73 m, 6.37◦

apt2_living 42 m3 0.03 m, 0.21◦ 0.78 m, 7.61◦ 0.65 m, 7.20◦ 0.73 m, 11.4◦ 0.40 m, 5.71◦

apt2_luke 53 m3 0.02 m, 0.28◦ 0.66 m, 7.10◦ 0.49 m, 6.66◦ 0.59 m, 11.4◦ 0.33 m, 4.85◦

office1_gates362 29 m3 0.04 m, 0.24◦ 1.05 m, 5.67◦ 0.91 m, 5.50◦ 1.03 m, 8.95◦ 0.52 m, 5.22◦

office1_gates381 44 m3 0.02 m, 0.23◦ 0.70 m, 8.23◦ 0.62 m, 7.96◦ 0.73 m, 12.9◦ 0.42 m, 6.23◦

office1_lounge 38 m3 0.03 m, 0.22◦ 0.77 m, 7.35◦ 0.56 m, 6.0◦ 0.97 m, 8.30◦ 0.39 m, 4.50◦

office1_manolis 50 m3 0.02 m, 0.27◦ 0.64 m, 6.56◦ 0.54 m, 5.25◦ 0.66 m, 11.9◦ 0.30 m, 4.67◦

office2_5a 38 m3 0.02 m, 0.23◦ 0.59 m, 5.65◦ 0.54 m, 5.48◦ 0.61 m, 8.05◦ 0.31 m, 4.32◦

office2_5b 79 m3 0.02 m, 0.17◦ 0.52 m, 4.32◦ 0.47 m, 3.80◦ 0.51 m, 7.29◦ 0.23 m, 4.14◦

Average 39 m3 0.03 m, 0.23◦ 0.74 m, 6.48◦ 0.63 m, 5.85◦ 0.73 m, 11.9◦ 0.38 m, 5.04◦

Fig. 7. Camera localization results on 12-Scenes dataset. For each subfigure, the 3D plot shows the camera trajectory (green for the ground truth and red for the 
prediction). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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matching 2D-3D features, filtering good ones, etc. 

5.3. FeatLoc for outdoor 

In this section, we provide an additional evaluation of FeatLoc 
approach on an outdoor dataset Cambridge (Kendall, 2015) to analyze 
how accurate it is when applying to outdoor scenarios. For experiments 
on this dataset, we use the same configuration for training the network 
while the augmentation parameters are set as d = 2.0, α = 15, and 
threshold = 1200. Note that for the outdoor scenes, we only synthesize 
pose along the detected horizontal plane. As we can see in Table 11, our 
method outperforms PoseNet (Kendall, 2015) in terms of translation 
error. However, they are just comparable with that of SPPNet (Purkait 
et al., 2018). The reasons come from our simplistic data augmentation 
technique. It is only robust for indoor environments that consist of more 
trustable features while the outdoor scenes contain various kinds of 
noise and less trustable ones. In order to continuously synthesize out
door data, it is necessary to re-project the entire 3D cloud map onto a 
single augmented image plane with some additional preprocessing steps 
before obtaining the final reliable ones, as is done in (Purkait et al., 

2018). In this work, however, we have proved that this labor-intensive 
procedure is not necessary for indoor scenarios. 

6. Discussion 

This section explains why FeatLoc++ is better than FeatLoc when 
learning with additional synthetic data. The initial FeatLoc version only 
inherits the symmetric function theory of PointNet (Qi et al. (2017a)), 
while FeatLoc++ additionally leverages the hierarchical point set 
feature learning of PointNet++ (Qi et al., 2017b). It has been proved 
that the original PointNet architecture does not capture the local 
structure induced in metric spaces of cloud point data (Qi et al., 2017b). 
The initial FeatLoc is thus limited in its ability to generalize to synthetic 
training data. In addition, due to the simplicity of our data augmentation 
approach, the synthesized samples only remain as separate features of 
the original images. In the testing phase, however, the new extracted 
features of test images will have many additional different sparse de
scriptors, which makes it difficult for FeatLoc to learn and capture the 
local context of the new synthesized data. Note that the augmented data 
retain most of the information from the original images while changing 

Fig. 8. Effect of Increasing Brightness. Two versions of FeatLoc++ (FeatLoc++No means learning without addition of augmented data and FeatLoc++Au means 
learning with addition of augmented data) compared to three recent state-of-the-arts localization models PoseNet17 (Kendall, 2017), MapNet, MapNet+
(Brahmbhatt, 2018). The FeatLoc models outperform the direct-image-based models in terms of presence of brightness. 

Fig. 9. Effect of Decreasing Brightness.  
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only the position and distribution of sparse descriptors. Therefore, 
FeatLoc performs well on the training data while facing overfitting when 
learning with both training and synthesized data. 

7. Conclusion 

This paper proposed a novel approach for regressing the global 6- 
DoF camera pose from sparse feature descriptors for indoor environ
ments. Our contributions can be summarized as follows:  

• We addressed the domain adaption problem in absolute pose 
regression by augmenting additional training. The augmented data 
may cover the poses in the regions not available in the training data.  

• We proposed an architecture that can directly consume sparse 
feature descriptors and showed its effectiveness compared to state- 
of-the-art methods.  

• The proposed data augmentation method is a relatively simple but 
efficient technique for generating an unlimited amount of synthetic 
training data based on a 3D cloud map.  

• We performed extensive experiments to validate our architecture 
and the proposed augmentation method. The results demonstrate 
that our method outperforms state-of-the-art APR-based approaches 
in terms of indoor scenarios.  

• We have verified that learning from sparse feature can encourage the 
framework mitigating the impacts from changing illumination or 
gradual change of environments. 

However, this study still consists of several limitations:  

• Proposed method relies on sparse features, it might be less robust 
when working under less contextual environments.  

• Although the proposed augmentation strategy is rather simple, it 
might be limited to environments where having less trustable fea
tures such as outdoor scenarios. 

In future work, we plan to investigate the feasibility of improving the 
network architecture to understand the invariance in descriptors when 
changing the viewpoint. If the network can reveal the properties of 
matched descriptors, the performance could be remarkably improved 
and comparable with that of geometry-based approaches. In addition, 
we plan to enhance the method’s ability to work under dynamic and less 
contextual environments. 

Fig. 10. Effect of Shadow Noise.  

Table 10 
Comparison of storage requirements on 7-Scenes (Shotton et al., 2013) dataset. We compared three methods of SuperPoint Structure from Motion (SfM), MapNet 
(Brahmbhatt, 2018), and our proposed FeatLoc++ (included SuperPoint’s weight of 5.2 MB).   

Area or #training SuperPoint (DeTone, 2018) MapNet (Brahmbhatt, 2018) SuperPoint (DeTone, 2018) & 

Scene Volume samples SfM  FeatLoc++(ours) 

Heads 1 m3 1000 1.12 GB 268.3 MB 38.8 MB 
Fire 2.5 m3 2000 2.30 GB 268.3 MB 38.8 MB 
Stairs 7.5 m3 2000 2.27 GB 268.3 MB 38.8 MB 
Pumpkin 5 m3 4000 4.55 GB 268.3 MB 38.8 MB 
Chess 6 m3 4000 4.55 GB 268.3 MB 38.8 MB 
Office 7.5 m3 6000 6.85 GB 268.3 MB 38.8 MB 
RedKitchen 18 m3 7000 7.98 GB 268.3 MB 38.8 MB  

Table 11 
Comparison of median localization errors on outdoor Cambridge dataset.  

Scene Area or 
Volume 

PoseNet ( 
Kendall, 2015) 

FeatLoc++Au 
(Ours) 

SPPNet (with 
synthesis data) 
(Purkait et al., 
2018) 

King’s 
College 

5600 m 1.66 m, 4.86◦ 1.30 m, 3.84◦ 0.74 m, 0.96◦

Old 
Hospital 

2000 m2 2.62 m, 4.90◦ 2.05 m, 6.06◦ 2.18 m, 3.92◦

Shop 
Facade 

875 m2 1.41 m, 7.18◦ 0.91 m, 7.50◦ 0.59 m, 2.53◦

StMary’s 
Church 

4800 m2 2.45 m, 7.96◦ 2.99 m, 10.4◦ 1.83 m, 3.35◦◦
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Häne, C., Heng, L., Lee, G.H., Fraundorfer, F., Furgale, P., Sattler, T., Pollefeys, M., 2017. 
3D visual perception for self-driving cars using a multi-camera system: Calibration, 
mapping, localization, and obstacle detection. Image Vis. Comput. 68, 14–27. 

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: 
Proceedings of the IEEE conference on computer vision and pattern recognition, 
pp. 770–778. 

Huang, Z., Xu, Y., Shi, J., Zhou, X., Bao, H., Zhang, G., 2019. Prior guided dropout for 
robust visual localization in dynamic environments. In: Proceedings of the IEEE/CVF 
International Conference on Computer Vision, pp. 2791–2800. 

Hyeon, J., Kim, J., Doh, N., 2021. Pose Correction for Highly Accurate Visual 
Localization in Large-scale Indoor Spaces. In: Proceedings of the IEEE/CVF 
International Conference on Computer Vision, pp. 15974–15983. 

Irschara, A., Zach, C., Frahm, J.-M., Bischof, H., 2009. From structure-from-motion point 
clouds to fast location recognition. In: 2009 IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 2599–2606. 

Juan, L., Gwun, O., 2009. A comparison of sift, pca-sift and surf. Int. J. Image Process. 
(IJIP) 3, 143–152. 

Kendall, A., 2016. Modelling uncertainty in deep learning for camera relocalization. In: 
2016 IEEE international conference on Robotics and Automation (ICRA), 
pp. 4762–4769. 

Kendall, A., 2017. Geometric loss functions for camera pose regression with deep 
learning. In: Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp. 5974–5983. 

Kendall, A.G., 2015. Posenet: A convolutional network for real-time 6-dof camera 
relocalization. In: Proceedings of the IEEE international conference on computer 
vision, pp. 2938–2946. 

Ketkar, N., 2017. Introduction to pytorch. In: Ketkar, N. (Ed.), Deep Learning with 
Python. Apress, Berkeley, CA, pp. 195–208. 

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint 
arXiv:1412.6980. 

Kneip, L., Scaramuzza, D., Siegwart, R., 2011. A novel parametrization of the 
perspective-three-point problem for a direct computation of absolute camera 
position and orientation. In: CVPR 2011, pp. 2969–2976. 

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep 
convolutional neural networks. Adv. Neural Inform. Process. Syst. 25, 1097–1105. 

Laskar, Z., Melekhov, I., Kalia, S., Kannala, J., 2017. Camera relocalization by computing 
pairwise relative poses using convolutional neural network. In: Proceedings of the 
IEEE International Conference on Computer Vision Workshops, pp. 929–938. 

Li, Y.S., 2012. Worldwide pose estimation using 3d point clouds. In: European conference 
on computer vision, pp. 15–29. 

Li, Y., Snavely, N., Huttenlocher, D.P., 2010. Location recognition using prioritized 
feature matching. In: European conference on computer vision, pp. 791–804. 

Lim, H., Sinha, S.N., Cohen, M.F., Uyttendaele, M., Kim, H.J., 2015. Real-time monocular 
image-based 6-DoF localization. Int. J. Robot. Res. 34 (4-5), 476–492. 

Liu, X., Qi, C.R., Guibas, L.J., 2019. Flownet3d: Learning scene flow in 3d point clouds. 
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp. 529–537. 

Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. Int. J. 
Comput. Vision 60 (2), 91–110. 

Luo, Z., Zhou, L., Bai, X., Chen, H., Zhang, J., Yao, Y., Quan, L., 2020. Aslfeat: Learning 
local features of accurate shape and localization. In: Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition, pp. 6589–6598. 

Melekhov, I., Ylioinas, J., Kannala, J., Rahtu, E., 2017. Image-based localization using 
hourglass networks. In: Proceedings of the IEEE international conference on 
computer vision workshops, pp. 879–886. 

Meng, L., Chen, J., Tung, F., Little, J.J., Valentin, J., de Silva, C.W., 2017. Backtracking 
regression forests for accurate camera relocalization. In: 2017 IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS), pp. 6886–6893. 

Meng, L., Tung, F., Little, J.J., Valentin, J., de Silva, C.W., 2018. Exploiting points and 
lines in regression forests for RGB-D camera relocalization. In: 2018 IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS), pp. 6827–6834. 

Naseer, T., Burgard, W., 2017. Deep regression for monocular camera-based 6-dof global 
localization in outdoor environments. In: 2017 IEEE/RSJ International Conference 
on Intelligent Robots and Systems (IROS), pp. 1525–1530. 

Purkait, P., Zhao, C., Zach, C., 2018. Synthetic View Generation for Absolute Pose 
Regression and Image. Synthesis BMVC, (p. 69). 

Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017a. Pointnet: Deep learning on point sets for 3d 
classification and segmentation. In: Proceedings of the IEEE conference on computer 
vision and pattern recognition, pp. 652–660. 

Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. Pointnet++: Deep hierarchical feature learning 
on point sets in a metric space. arXiv preprint arXiv:1706.02413. 

Radwan, N., Valada, A., Burgard, W., 2018. Vlocnet++: Deep multitask learning for 
semantic visual localization and odometry. IEEE Rob. Autom. Lett. 3 (4), 
4407–4414. 

Sarlin, P.E., 2020. Superglue: Learning feature matching with graph neural networks. In: 
Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition, pp. 4938–4947. 

Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M., 2019. From Coarse to Fine: Robust 
Hierarchical Localization at Large Scale. CVPR. 

Sattler, T.L., 2011. Fast image-based localization using direct 2d-to-3d matching. In: 
2011 International Conference on Computer Vision, pp. 667–674. 

Sattler, T.L., 2016. Efficient & effective prioritized matching for large-scale image-based 
localization. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1744–1756. 

Sattler, T., Torii, A., Sivic, J., Pollefeys, M., Taira, H., Okutomi, M., Pajdla, T., 2017. Are 
large-scale 3d models really necessary for accurate visual localization?. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 1637–1646. 

Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixe, L., 2019. Understanding the limitations of 
cnn-based absolute camera pose regression. In: Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition, pp. 3302–3312. 

Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A., 2013. Scene 
coordinate regression forests for camera relocalization in RGB-D images. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 2930–2937. 

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale 
image recognition. arXiv preprint arXiv:1409.1556. 

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A., 2015. 
Going deeper with convolutions. In: Proceedings of the IEEE conference on computer 
vision and pattern recognition, pp. 1–9. 

Valada, A., Radwan, N., Burgard, W., 2018. Deep auxiliary learning for visual 
localization and odometry. In: 2018 IEEE international conference on robotics and 
automation (ICRA), pp. 6939–6946. 

Valentin, J.D., 2016. Learning to navigate the energy landscape. In: In 2016 Fourth 
International Conference on 3D Vision (3DV), pp. 323–332. 

Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., Cremers, D., 2017. 
Image-based localization using lstms for structured feature correlation. In: 
Proceedings of the IEEE International Conference on Computer Vision, pp. 627–637. 

Wang, B., Chen, C., Lu, C.X., Zhao, P., Trigoni, N., Markham, A., 2020a. Atloc: Attention 
guided camera localization. Proceedings of the AAAI Conference on Artificial 
Intelligence vol. 34, 10393–10401. 

Wang, W., Wang, B., Zhao, P., Chen, C., Clark, R., Yang, B., Trigoni, N., et al., 2020. 
Pointloc: Deep pose regressor for lidar point cloud localization. arXiv preprint arXiv: 
2003.02392. 

Wu, C., 2013. Towards linear-time incremental structure from motion. In: 2013 
International Conference on 3D Vision-3DV 2013, pp. 127–134. 

Zhang, W., Kosecka, J., 2006. Image based localization in urban environments. In: Third 
international symposium on 3D data processing, visualization, and transmission 
(3DPVT’06), pp. 33–40. 

Zheng, T., Chen, C., Yuan, J., Li, B., Ren, K., 2019. Pointcloud saliency maps. In: 
Proceedings of the IEEE/CVF International Conference on Computer Vision, 
pp. 1598–1606. 

Zhou, K., Chen, C., Wang, B., Saputra, M.R., Trigoni, N., Markham, A., 2021. VMLoc: 
Variational Fusion For Learning-Based Multimodal Camera Localization. 
Proceedings of the AAAI Conference on Artificial Intelligence vol. 35, 6165–6173. 

T.B. Bach et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0924-2716(22)00124-1/h0005
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0005
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0005
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0010
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0010
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0010
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0015
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0015
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0015
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0020
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0020
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0020
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0020
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0025
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0025
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0025
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0030
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0030
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0030
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0035
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0035
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0040
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0040
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0040
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0045
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0045
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0050
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0050
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0050
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0055
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0055
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0055
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0060
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0060
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0060
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0065
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0065
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0065
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0070
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0070
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0070
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0075
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0075
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0080
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0080
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0080
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0085
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0085
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0085
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0090
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0090
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0090
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0095
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0095
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0105
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0105
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0105
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0110
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0110
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0115
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0115
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0115
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0120
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0120
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0125
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0125
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0130
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0130
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0135
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0135
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0135
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0140
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0140
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0145
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0145
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0145
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0150
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0150
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0150
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0155
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0155
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0155
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0160
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0160
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0160
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0165
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0165
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0165
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0170
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0170
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0175
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0175
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0175
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0185
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0185
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0185
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0190
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0190
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0190
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0195
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0195
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0200
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0200
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0205
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0205
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0210
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0210
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0210
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0210
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0215
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0215
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0215
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0220
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0220
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0220
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0220
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0230
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0230
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0230
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0235
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0235
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0235
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0240
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0240
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0245
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0245
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0245
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0250
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0250
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0250
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0260
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0260
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0265
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0265
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0265
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0270
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0270
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0270
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0275
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0275
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0275

	FeatLoc: Absolute pose regressor for indoor 2D sparse features with simplistic view synthesizing
	1 Introduction
	2 Related work
	2.1 Structure-based localization
	2.2 Deep neural networks for camera localization
	2.3 Feature extractors for deep camera pose regressor

	3 Proposed approach
	3.1 Problem statement
	3.2 Base architecture of FeatLoc
	3.2.1 Feature Pre-processing: input layer
	3.2.2 Feature joining layer
	3.2.3 Regressor block and loss function

	3.3 Data augmentation
	3.4 Comparisons to related work

	4 Experimental evaluation
	4.1 Implementation details
	4.2 Dataset description and pre-processing
	4.3 Baselines
	4.4 FeatLoc verification
	4.5 Learning with synthetic data
	4.6 Evaluation on 12-Scenes Dataset

	5 Ablation study and efficiency evaluation
	5.1 Changing testing condition
	5.2 System efficiency
	5.3 FeatLoc for outdoor

	6 Discussion
	7 Conclusion
	Declaration of Competing Interest
	References


