
ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

Available online 11 May 2022
0924-2716/© 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

FeatLoc: Absolute pose regressor for indoor 2D sparse features with
simplistic view synthesizing

Thuan Bui Bach a, Tuan Tran Dinh b, Joo-Ho Lee b,*

a Graduate School of Information Science and Engineering, Ritsumeikan University, Japan
b College of Information Science and Engineering, Ritsumeikan University, Japan

A R T I C L E I N F O

Keywords:
Visual localization
Sparse features
Absolute pose regression

A B S T R A C T

Precise localization using visual sensors is a fundamental requirement in many applications, including robotics,
augmented reality, and autonomous systems. Traditionally, the localization problem has been tackled by
leveraging 3D-geometry registering approaches. Recently, end-to-end regressor strategies using deep convolu
tional neural networks have achieved impressive performance, but they do not achieve the same performance as
3D structure-based methods. To some extent, this problem has been tackled by leveraging the beneficial prop
erties of sequential images or geometric constraints. However, these approaches can only achieve a slight
improvement. In this work, we address this problem for indoor scenarios, and we argue that regressing the
camera pose using sparse feature descriptors could significantly improve the pose regressor performance
compared with deep single-feature-vector representation. We propose a novel approach that can directly
consume sparse feature descriptors to regress the camera pose effectively. More importantly, we propose a
simplistic data augmentation procedure to exploit the sparse descriptors of unseen poses, leading to a remarkable
enhancement in the generalization performance. Lastly, we present an extensive evaluation of our method on
publicly available indoor datasets. Our FeatLoc achieves 22% and 40% improvements in translation errors on 7-
Scenes and 12-Scenes relatively, compared with recent state-of-the-art absolute pose regression-based ap
proaches. Our codes are released at https://github.com/ais-lab/FeatLoc.

1. Introduction

Precise localization techniques play an essential role in many real-
world applications, such as intelligent systems, augmented reality ap
plications (Häne et al., 2017; Lim et al., 2015; Castle, 2008), and
autonomous systems. Their algorithms enable us to accurately compute
the position and orientation of a given image in a known scene. Popular
approaches use advanced hardware, such as LIDAR sensors, GPS, WIFI,
or Bluetooth. However, such wireless hardware sensors suffer from GPS-
denied environments, such as bad weather conditions, blocked areas,
and especially indoor environments. Another common solution is the
use of inexpensive visual sensors. However, robust visual localization
based on a single image is still challenging, especially in end-to-end
learning approaches.

Camera-based localization has been widely tackled by exploiting 2D-
3D matching between a query 2D image and a given 3D map (Sattler,
2016; Brachmann, 2017; Brachmann and Rother, 2018; Meng et al.,
2017). Traditionally, these approaches first establish 2D-3D matches

based on matching descriptors associated with both test images and a 3D
map. The algorithms then estimate the camera pose by applying an n-
point-pose solver (Albl et al., 2015; Kneip et al., 2011) inside a RANSAC
(Chum and Matas, 2008). Alternatively, the 3D point positions can be
directly predicted by leveraging state-of-the-art machine learning re
gressors (Sattler, 2016; Brachmann, 2017; Meng et al., 2017; Meng et al.,
2018).

In recent years, methods based on deep convolutional neural net
works (DNNs) have become popular for absolute pose regression (APR)
(Kendall, 2015; Walch et al., 2017; Brahmbhatt, 2018; Wang et al.,
2020a,b; Purkait et al., 2018; Zhou et al., 2021). Instead of storing a
large 3D map in memory or just using machine learning only for some
parts of the localization pipeline (Sattler, 2016), these approaches aim to
learn the whole pipeline of the localization task. Given a training image
set and corresponding poses, APR approaches train DNNs to automati
cally extract features and directly recover camera poses from single
images. The general advantages of APR approaches are the benefits of
end-to-end training, where the camera pose can be computed directly

* Corresponding author.
E-mail address: leejooho@is.ritsumei.ac.jp (J.-H. Lee).

Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier.com/locate/isprsjprs

https://doi.org/10.1016/j.isprsjprs.2022.04.021
Received 13 December 2021; Received in revised form 21 April 2022; Accepted 22 April 2022

https://github.com/ais-lab/FeatLoc
mailto:leejooho@is.ritsumei.ac.jp
www.sciencedirect.com/science/journal/09242716
https://www.elsevier.com/locate/isprsjprs
https://doi.org/10.1016/j.isprsjprs.2022.04.021
https://doi.org/10.1016/j.isprsjprs.2022.04.021
https://doi.org/10.1016/j.isprsjprs.2022.04.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2022.04.021&domain=pdf

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

51

from images in real-time (less than 50 ms for pose estimation per image).
Another advantage is low memory requirement (≈ 100 MB) for the
network weight instead of several GB for reference 3D cloud map and
training samples. The final re-localization system, therefore, is very
scalable, compared to pure geometric based method (Kendall, 2015). In
addition, the performance speed and the usage of memory are inde
pendent of number of training samples, while metric localization scales
O(n) with training data size (Wu, 2013). Although APR techniques are
computationally efficient, they are still significantly less accurate than
conventional geometry-based methods (Sattler et al., 2019; Purkait
et al., 2018), and they are restricted from generalizing beyond the
limitation of the training data.

In this work, we argue that regressing the camera pose using sparse
feature descriptors can significantly improve the localization perfor
mance and allow generalization beyond the limitation of the training
data compared with using dense feature representation approaches
(Kendall, 2015; Wang et al., 2020a,b; Brahmbhatt, 2018). We propose
FeatLoc, a direct end-to-end camera pose regressor from 2D sparse
feature descriptors for indoor localization. Unlike previous methods,
which rely on pre-trained deep feature extractors (Kendall, 2015; Walch
et al., 2017; Wang et al., 2020a,b), our proposed FeatLoc consumes
sparse descriptors to regress the global map, which is advantageous for
several reasons.

1. Learning from sparse features could make it easier for the DNN
model to understand the underlying geometric concepts of the en
vironments, while previous direct image-based approaches have no
built-in reasoning about geometry (Kendall, 2015; Wang et al.,
2020a,b; Brahmbhatt, 2018) during the training phase. The results
thus are poor of ability to explore unseen poses that are different
from training set (Sattler et al., 2019).

2. The usage of sparse features allows the training data to be augmented
with unseen poses, leading to substantial improvements in the
generalization performance.

3. Previous RGB-based methods (Kendall, 2015; Brahmbhatt, 2018;
Wang et al., 2020a,b) spend a lot of unnecessary computation (and
trainable parameters) on dense feature-extraction, which seems not
necessary for this task of re-localization. In light of empirical evi
dence, pure geometry methods which rely only on 2D sparse features
(a gold-standard such as SIFT (Lowe, 2004)) in general have better
accuracy in pose estimation than current CNN-based approaches
(Sattler et al., 2019). Hence, the networks used in our approach is
significantly small and be able to train from scratch without a need of
leveraging pre-trained classification networks.

4. More importantly, in the later experiment results, we shown that our
networks learned on 2D sparse feature are more robust to condition
changing compared to recent CNN-based approaches (Kendall, 2017;
Brahmbhatt, 2018).

In addition, our proposed architecture is developed mainly based on
the PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b)
structures. Thus, it inherits the capability of learning the local context
and multi-scale feature combination, which leads to an improvement in
this task. Unlike SPPNet (Purkait et al., 2018), which must randomly
regulate the sparse descriptors into a fixed 2D grid before applying the
convolutional network, our proposed architecture can directly input the
entire features descriptors to produce camera poses without losing
valuable information. Fig. 1 illustrates the superior performance of our
FeatLoc approach on an indoor chess scene from the 7-Scenes (Shotton
et al., 2013) dataset.

2. Related work

2.1. Structure-based localization

Geometry-based localization of camera pose with respect to a 3D

environment has been well studied in the last decade (Li et al., 2010;
Sattler, 2016; Sattler, 2011; Li, 2012). Specifically, these approaches
rely on 2D-3D matches between 2D pixel positions and a pre-defined 3D
point map for pose estimation. The matches can be established by
matching the descriptors (Donoser, 2014; Li, 2012; Sarlin, 2020; Sattler,
2016) before applying the n-point algorithm (Albl et al., 2015; Kneip
et al., 2011) to estimate the camera poses. In the case that the underlying
3D map is enormous, the computational cost can be greatly reduced by
adding bag-of-features-based steps to quickly identify relevant subsets of
the cloud points (Zhang & Kosecka, 2006). Recent efforts have
addressed this problem by regressing 3D coordinates from pixel patches
(Brachmann, 2017; Brachmann et al., 2016; Brachmann and Rother,
2018) and have achieved impressive pose accuracy at a small scale.
Nevertheless, they ultimately cover only a tiny fraction of the world.

2.2. Deep neural networks for camera localization

Recent works have proposed learning-based methods to estimate
absolute camera poses of an input image (Brahmbhatt, 2018; Kendall,
2016, 2017, 2015; Melekhov et al., 2017; Naseer and Burgard, 2017;
Wang et al., 2020a,b; Zhou et al., 2021), thus implicitly representing the
entire scene by the weights of the network. They all follow the same
pipelines of a feature extractor comprising with a fully connected re
gressor (Huang et al., 2019; Kendall, 2015). The key to these methods
lies in the image vector representation as the embedded vector, which is
extracted using a base network, such as VGG (Simonyan & Zisserman,
2014) or ResNet (He et al., 2016). These methods mainly differ in the
underlying base network, or the loss function used to train the network.
PoseNet (Kendall, 2015) was probably the first to adopt DNNs to learn
the absolute camera pose from an input image. This approach was then
extended by leveraging long short-term memory (LSTM) (Walch et al.,
2017) to structure embedded feature vectors, leading to a significant
improvement. Later, localization performance was improved by using
geometric reprojection errors (Kendall, 2017) or adding visual odometry
constraints (Radwan et al., 2018; Valada et al., 2018). The authors of
(Brahmbhatt, 2018; Radwan et al., 2018) proposed methods to localize
camera poses based on sequential images, and they showed that the

Fig. 1. Camera localization results for an indoor scene (left figure, green rep
resents ground truth and red represents the prediction) from 7-Scenes (Shotton
et al., 2013) dataset and comparison of localization errors under the effect of
brightness. We directly feed sparse features from a single image to a neural
network for predicting the 6-degrees-of-freedom (DoF) pose without any need
for pre-processing. We leverage the 3D cloud map to generate unlimited syn
thetic sparse training data to boost the relocalization performance of FeatLoc.
The estimation results of FeatLoc are more robust under condition changing
such as brightness (figure on the right) when compared with recent state-of-the-
art methods (such as PoseNet (Kendall, 2015, 2017) and MapNet (Brahmbhatt,
2018)). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

T.B. Bach et al.

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

52

relocalization performance can be significantly improved when learning
on these approaches. Recent efforts additionally leverage the self-
attention module (Wang et al., 2020a,b) to automatically guide the
feature extractor to focus on the static region of the input image,
yielding superior global camera pose regression performance, or intro
duce a novel framework to effectively fuse multiple modalities, such as
image and depth (Zhou et al., 2021). However, the aforementioned
approaches are still less accurate than structure-based methods (Sattler
et al., 2019). This is probably because of the difficulty in geometric
reasoning or generalizing beyond the limitation of the training data.

2.3. Feature extractors for deep camera pose regressor

Training a deep neural network from scratch for camera pose
regression would be impractical due to the extensive training set re
quirements (Walch et al., 2017). In addition, it seems impossible to
collect such a massive dataset because each camera pose label is covered
by at least one training sample, where the output of the regression task is
continuous and infinite. Therefore, most previous APR approaches
(Kendall, 2015; Wang et al., 2020a,b; Brahmbhatt, 2018; Kendall, 2016,
2017; Sattler et al., 2019) utilize a pre-trained classification network
(VGG (Simonyan & Zisserman, 2014) or ResNet (He et al., 2016)) as the
feature extractor for this task. It will then output a high-dimensional
feature vector, which can be seen as a feature that represents the
image to be localized. However, this procedure of camera pose regres
sion struggles to generalize beyond the limitation of the training data. In
contrast, utilizing feature extractors under sparse descriptors can solve
this problem by augmenting unlimited additional training data of the
unseen poses by simply projecting 3D-2D of local features to image plane
(Sattler et al., 2017; Hyeon et al., 2021). In this way, SPPnet (Purkait
et al., 2018) can achieve a superior relocalization performance
compared with previous APR methods.

3. Proposed approach

6-DoF camera pose estimation utilizing geometry-based methods can
still achieve superior performance compared with recent efforts towards
end-to-end learning strategies (Brachmann and Rother, 2018; Meng
et al., 2017; Walch et al., 2017). Inspired by that, our proposed approach
relies on sparse features, as in geometry-based approaches, to regress the
global camera pose from an input image. Instead of matching sparse key
points to compute the global camera poses, we propose a lightweight
regressor architecture to learn the global map from sparse feature de
scriptors. Our FeatLoc architecture can directly input the sparse features
to estimate the absolute camera pose efficiently. In addition, it can
automatically focus on geometrically robust features and adapt effi
ciently to simplistic synthetic data. The proposed architecture is notably
compact while achieving state-of-the-art performance, as described in
detail in Section 3.2. In Section 3.3, we present a simplistic data
augmentation procedure for exploiting the sparse descriptors of unseen
poses to enrich the FeatLoc performance. Finally, in Section 3.4, we
compare our approach with some related works to show the improve
ments of our framework that can lead to state-of-the-art performance on
indoor scenes.

3.1. Problem statement

We design a lightweight deep neural architecture to regress the
camera pose from spare feature sets. For each timestamp t, the agent
receives a sparse feature set P t = {di,ki|i = 1, ..,N} from image I t,
where di is a description vector, and ki is the vector of its coordinate (x,
y) in the 2D pixel space. For simplicity, to design the network, we chose
the descriptor dimension di ∈ R256 for all experiments. However, our
designed network can work well under an arbitrary number of input
descriptors and automatically focus on robust features. In contrast, other

approaches, such as SPPNet, must randomly regulate the set of features
on a fixed 2D regular grid before feeding them to a deep convolutional
architecture. For the output of the regression task, our model will output
a camera pose, which is parameterized by a 6-DoF pose [t, r]T, where t is
a translation vector t ∈ R3 and r is a quaternion-based orientation vector
r ∈ R4.

Given a feature set P t extracted from image I t , our goal is not only
to estimate the global camera pose [r, t] but also to understand of the
change of camera pose according to the change of feature set positions.
To achieve this, we assume that the descriptors remain invariant to a
slight change of viewpoint. Fig. 2 shows an example of sparse feature
positions changed under a near viewpoint. Suppose that P 1

t ,P
2
t , ...,P

M
t

are the augmented feature sets generated based on reference feature set
P 0

t and its visible 3D cloud points. To this end, with additional training
data, our deep 6-DoF pose regressor F(P) = (r, t)T can not only learn to
avoid overfitting but can also generalize the environment well. The
function F here is usually a DNN.

3.2. Base architecture of FeatLoc

This section introduces the proposed architecture of FeatLoc, a DNN
architecture that directly consumes sparse feature key points to learn a
global map through a monocular image set. Instead of learning directly
from RGB images, our network learns from sparse features. Hence, the
proposed architecture has the advantage of possible data augmentation.
The overall architecture of FeatLoc is illustrated in Fig. 3. The FeatLoc
model consists of an input layer, feature joining, and a regressor layer. In
the input layer, the extracted sparse feature set P t is down-sampled to a
fixed N samples. The whole FeatLoc architecture is mainly based on
PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b).

3.2.1. Feature Pre-processing: input layer
The task of training a DNN regressor for a 6-DoF camera pose from

scratch is impractical because the output in this regression task is
continuous and infinite. As a solution, previous works have leveraged a
pre-trained classification network, such as GoogLeNet (Szegedy et al.,
2015) or ResNet (Brahmbhatt, 2018), to extract the image representa
tion feature vector before localizing the camera pose. While this pro
cedure has shown some success in APR tasks, it is nevertheless limited in
its achievable accuracy. Therefore, it is questionable whether these
feature extractors are the best choice for the pose regression task.
Human beings utilize key points to localize their position. In addition,
classical geometric methods can precisely measure the query image’s
location by exploring the key points of the image. Inspired by this, our
work uses the feature key points of images as representatives to be
localized.

Here, we utilize the SuperPoint architecture (DeTone, 2018) as a
base key point feature extractor. We select the SuperPoint model for the
following reasons: (1) it is one of the most powerful deep feature

Fig. 2. An example of synthesized sparse descriptors (right) when changing the
viewpoints for the challenging 7-Scenes dataset (Shotton et al., 2013). We
leverage the 3D cloud map generated from training image samples to synthesize
unseen viewpoints. The augmentation result on the right was generated by
reprojecting the features from the reference image on the left.

T.B. Bach et al.

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

53

extractors compared in terms of localization error and repeatability (Luo
et al., 2020; Sarlin, 2020). (2) SuperPoint is available to be implemented
for generating 3D cloud maps in hloc toolbox (Sarlin et al., 2019), which
gives us a straightforward way to produce additional sparse descriptor
data as the central part of this work.

3.2.2. Feature joining layer
Feature representation plays a crucial role in achieving accurate

relocalization (Kendall, 2015; Walch et al., 2017). Here, each key point
has two essential factors: the descriptor and key point position. This
section discusses our feature joining layer, where the key point position
and its descriptor will jointly learn to output a united independent
vector. The obtained feature vectors are then extended to a higher
dimensional space before applying the max-pooling layer to obtain the
final feature to be localized.

Existing literature (Qi et al., 2017a; Zheng et al., 2019) has proved
that the combination of feature extension and max-pooling layers, such
as in PointNet, can identify critical points. Therefore, this is a desirable
choice for our regression task. Initially, the 2D key point locations k will
be encoded into 256 dimensions, the same as the descriptor dimension,
using multi-layer perceptron (MLP) before combining with its
descriptor. This encoder is illustrated as the E1 block in Fig. 3. The whole
encoding process can be described as.

xi = di +MPL(ki) (1)

The encoding of key point positions will later help the model gain
more information about the camera pose. It also shows a distinct feature
between two near-camera poses. The second part of the feature joining
layer is developed mainly based on the PointNet structure.

In particular, PointNet exploits the MLP layer, max-pooling layer,
and feature transformation to approximate a permutation-invariant
function for point cloud data. Here, we only inherit the combination
between the max-pooling and multi-perceptron function for our locali
zation task. In general, it is a universal continuous set function
approximator applied on orderless sets. The idea can be described as.

f ({x1,⋯, xn}) ≈ g(h(x1),⋯, h(xn)) (2)

where f : 2RN →R, h : RN→RK, and g : RK × ⋯RK
⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅ ⏟

n

→R is a symmetric

function.
This technique is a relatively simple but efficient way to capture the

different properties of the input set. In particular, h is approximated by
MLP, and g is a symmetric function, which is the max-pooling function in
this case. h is the encoder block E2 of our proposed architecture in Fig. 3.

In addition, our later experiments show that replacing the feature
encoder with a multi-scale grouping set abstraction layer in the
PointNet++ architecture (Qi et al., 2017b) can lead to a substantial
improvement in terms of learning with additional synthetic data Fig. 4
shows the proposed FeatLoc++ architecture, where the MSG-SA layer
replaces the combination of encoder E1 and descriptor. Here, the SA
layer is composed of a sampling layer, grouping layer, and PointNet
layer (Qi et al., 2017a). The SA layer takes a feature matrix F ∈ RN×C as
input and outputs a new feature matrix F′

∈ RN′
×C′

, where N and N′ are
the numbers of input and the output sparse features, and C and C′ are the
input and output feature dimensions, respectively. The multi-scale
grouping strategy adopts farthest point sampling to sample N′ regions
with each region center as xj; then, for each region (defined by a
neighborhood of radius r), it utilizes the following symmetric function to
extract its local feature (Liu et al., 2019):

F’
j = MAX{i|‖xi − xj≤r‖}

{
h
(
Fi, xi − xj

)}
(3)

where Fi is the ith row of F, Fj is the jth row of F’, h : RC→RC’ is the MLP,
and MAX is the max pooling layer (Wang et al., 2020a,b).

In this work, we experiment with three variants of FeatLoc: FeatLoc,
FeatLoc+, and FeatLoc++. FeatLoc and FeatLoc+ have the same
structural components as illustrated in Fig. 3, where FeatLoc+ is
modified by adding additional hidden layers in the encoder E1, E2, and
the regressor layer. In FeatLoc++, the encoder block E1 of the feature
joining layer is replaced with a multi-scale grouping set abstraction, as
seen in Fig. 4.

3.2.3. Regressor block and loss function
This section describes the regressor block and loss function we used

to train the architecture. The regressor layer consists of a sequence of
fully connected layers, which consume the obtained feature vector from
the former feature joining block to estimate the 6-DoF pose [̂t, r̂].

Given a feature set P extracted from image I and its corresponding
pose label [̂t, r̂], our network predicts the 6-DoF camera pose as two
disjoint vectors. The output vector consists of a camera position t ∈ R3

and camera orientation r ∈ R4 in quaternion form.
We follow (Kendall, 2016) in the choice of objective function. The

parameters inside the neural network are optimized using L1 loss ac
cording to the following function:

loss(θ) =
⃦
⃦t − t‖1e− β + β+

⃦
⃦logr − logr̂‖1e− γ + γ (4)

where β and γ are the weights used to balance the learning losses be

Fig. 3. Architecture of FeatLoc. It consists of an input layer, feature joining, and a pose regressor. The input layer is composed of a feature extractor (can be either a
traditional or deep feature extractor, such as SIFT (Juan and Gwun, 2009) or SuperPoint (Sarlin, 2020). The extracted features are sent to the feature joining layer for
registering feature positions and their descriptor into a united feature vector. Finally, the regressor layer regresses the 6-DoF camera poses using the united feature
vector as the input.

T.B. Bach et al.

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

54

tween position and orientation; for all scenes, β and γ are simultaneously
learned during the training period from their initial values of β0 and γ0,
respectively. logr is the logarithmic form of quaternion r, which is
defined as.

logr =

⎧
⎨

⎩

v
‖v‖

cos− 1u, if ‖v‖ ∕= 0

0, otherwise
(5)

where r = (u, v), u is a real scalar part, and v is a 3D vector of the
imaginary part. This parameterization of camera orientation as the
logarithm of a quaternion unit can map any rotations in 3D space
uniquely because the quaternion itself is not unique. In practice, both
− r and r are represented as the same rotation because two hemispheres
can be used to represent a single rotation. In addition, the logarithmic
parameterization of the rotation parameter showed a better perfor
mance than learning from the original 4D quaternion (Wang et al.,
2020a,b). Thus, all experiments used the logarithm of quaternions to
ensure all rotations are restricted to the same hemisphere.

3.3. Data augmentation

Training a deep neural network requires a large number of training
samples (Krizhevsky et al., 2012), especially in the task of camera pose
regression (Sattler et al., 2019), where the camera pose labels are in a
continuous domain. To solve this problem, we propose a simple
augmentation approach to synthesize more training data. Our FeatLoc
model can thus learn to generalize beyond the limitation of the training
data.

The general approaches for augmenting data for image classification
include image distortions, cropping, rotation, and color changing.
Because applying these methods to the training data does not affect the
class label, it thus enriches the DNN model with new unseen data. In our
case, however, these traditional distortion approaches cannot be applied
as they would affect the camera pose. Therefore, we leverage the 3D
cloud map generated based on SfM toolboxes using the training samples.
Our augmented method is inspired by previous work (Purkait et al.,
2018; Irschara et al., 2009); thus, the following strategy is generally
similar to that of (Purkait et al., 2018). However, the synthesis strategy
of this work is much simpler compared with (Purkait et al., 2018).

Given a 3D cloud map D , a training dataset T , and the intrinsic
camera parameter c of the dataset, where D consists of k different cloud
point sets Di, T consists of k different feature sets P i and 6-DoF camera
pose Ti. k is the number of image samples in the training dataset. The
camera model in this work is assumed to be a pinhole camera; thus, the
relationship between a 3D cloud point p = (x, y, z)T

∈ R3, p ∈ D and a

2D pixel position x = (i, j)T
∈ R2 is as follows:

π(x, y, z)T
=

(
fxx
z
+ cx,

fyy
z
+ cy

)

= (i, j)T (6)

where fx, fy and cx, cy refer to the focal length and optical center of the
camera, respectively. Here, we represent the 6-DoF camera pose using
transformation matrix T. The transformation matrix set is also known as
the special Euclidean group.

SE(3) =
{

T =

[
R t
0T 1

]

∈ R4×4
⃒
⃒
⃒
⃒R ∈ SO(3), t ∈ R3

}

(7)

For each training sample {P i,Ti}, we randomly synthesize 50 rela
tive poses Tij based on the original camera pose Ti, where the trans
lations and orientations of Tij are chosen uniformly within the ranges of
[− α,+α] and [− d, + d], respectively.

Assume that αx,αy, and αz are roll, pitch, and yaw counterclockwise

Fig. 4. Architecture of FeatLoc++. The main components are the same as those of FeatLoc, which includes an input layer, feature joining, and a pose regressor. The
new structure’s only change is in the feature joining layer, where the encoder E1 is replaced with a multi-scale grouping (MSG) set abstraction (SA) module.
FeatLoc++ can adaptively learn to combine features from multiple scales and capture the local context of additional synthetic training samples with this
replacement.

T.B. Bach et al.

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

55

rotations, respectively, which are chosen randomly within the range of
[− α, + α], and tx, ty, and tz are the shifts along all directions, which are
also chosen randomly from the interval [− d, + d]. This random process
is illustrated in line 4 of Algorithm 1, where the relative camera pose Tij

will be calculated based on translation vector tij = (tx, ty, tx)T and the
random shifts of αx,αy,αz. The new synthesized camera pose can thus be
described as follows:

Twj = TwiTij (8)

where the Twi and Twj are the reference and synthesized camera co
ordinates in the world coordinate system, respectively. Tij is the relative
transformation matrix between reference and synthesized camera pose,
computed as follows:

Tij =

[
Rij tij
0T 1

]

(9)

Rij = Rx(αx)Ry
(
αy
)
Rz(αz) (10)

Rx(αx) =

⎡

⎣
1 0 0
0 cosαx − sinαx
0 sinαx cosαx

⎤

⎦ (11)

Ry
(
αy
)
=

⎡

⎣
cosαy 0 sinαy

0 1 0
− sinαy 0 cosαy

⎤

⎦ (12)

Rz(αz) =

⎡

⎣
cosαz − sinαz 0
sinαz cosαz 0

0 0 1

⎤

⎦ (13)

This gives us the new pose labels for the synthetic viewpoints. To
generate the synthetic key points of the new pose labels, we use Eq. (6)
to reproject the 3D cloud points Di to the new synthesized camera plane
based on its coordinate system. Note that before reprojecting, we
convert all related point cloud coordinates to the new coordinate sys
tems of the synthetic poses. Once the reprojection process is done, we
remove all invalid reprojected key points, which are those not in front of
the camera, using the threshold parameter, which defines the minimum
number of valid reprojected key points. We then discard entire synthetic
ones if the number of valid reprojected points is less than the threshold.
Finally, the valid feature descriptors are copied corresponding to its
original feature set P i. Note that none of the prior knowledge of testing
data is exploited during augmentation. The algorithm 1 summarizes the
whole above process.

3.4. Comparisons to related work

The FeatLoc architecture is developed mainly based on the PointNet
(Qi et al., 2017a) and PointNet++ (Qi et al., 2017b) structures. FeatLoc
inherits the critical-points theory of the PointNet structure; thus, Feat
Loc can learn to use the collection of critical key points. Unlike other
deep pose regression approaches, which cannot synthesize additional
data from existing training samples, our approach regresses the camera
poses from sparse features descriptors. The performance can thus be
significantly enhanced due to the addition of synthetic training samples.
In addition, in the test time, the trained network can work well with the
independent number of input descriptors, while other sparse feature
regressor approaches (Purkait et al., 2018) require some pre-processing
steps before localizing the image location.

FeatLoc vs. SPPNet (Purkait et al., 2018): FeatLoc can jointly learn
the position and appearance of every sparse descriptor. This makes the
FeatLoc descriptor independent of all extracted key points, making it
feasible to apply critical-points theory (Qi et al., 2017a). The model is
thus flexible to consume a different number of sparse descriptors and
automatically capture the valuable descriptors. Moreover, SPPnet must

randomly regulate the sparse descriptors into a fixed 2D grid before
applying the convolutional layer. However, this random process renders
data unnecessarily grid-like, which could cause issues or discard
important information. Regarding the augmentation method, our
approach is simpler to implement. We only use the information from
reference images to generate the synthetic data, while in SPPNet, each
synthetic image must use all 3D key points, leading to a time-consuming
augmentation process.

FeatLoc vs. MapNet (Brahmbhatt, 2018): MapNet leverages the
valuable properties of image sequences during the learning period to
enhance the performance of camera relocalization. However, it still
struggles to generalize beyond the training data or might not generalize
at all (Sattler et al., 2019). We believe that with sufficient training
samples from the environment, end-to-end pose regressor approaches
can close this gap and will become practically relevant. Here, our
FeatLoc can provide additional training data by learning from sparse
features. Further, training FeatLoc does not require sequential images,
leading to the more straightforward data collection.

4. Experimental evaluation

In this section, we discuss the different evaluation aspects of our
approach on a small-scale indoor dataset to show the robustness of our
approach in indoor scenarios and compare the obtained results to those
of state-of-the-art methods.

4.1. Implementation details

We implemented our algorithm with Pytorch (Ketkar, 2017) using
the ADAM optimizer (Kingma & Ba, 2014). We set the initial learning
rate to 6e-4 with a weight decay of 5e-4. The mini-batch size was 86, and
the weight initialization was β0 = − 3.0 and γ0 = − 3.0. All experiments
were conducted on two NVIDIA GTX 1080ti GPUs, where FeatLoc++

requires approximately 5 ms to run on time. We used the same param
eter settings of FeatLoc when evaluating with a different number of
sparse features. Following the convention of previous works (Kendall,
2015, 2016; Walch et al., 2017; Wang et al., 2020a,b; Purkait et al.,
2018), we computed the median error for both translation and orien
tation. We report the orientation errors in degrees and positional errors
in meters. Each data setting was trained for 200 epochs.

The parameter settings of FeatLoc and FeatLoc++ are listed in
Table 1 and Table 2. The initial FeatLoc architecture is rather simple
compared to that of FeatLoc++. A comparison among different numbers
of parameters can also be found in Table 3.

4.2. Dataset description and pre-processing

We evaluated our proposed approach on the 7-Scenes (Shotton et al.,
2013) and the 12-Scenes (Valentin, 2016) public indoor benchmark
datasets to verify the robustness of our approach in indoor scenarios.
The 7-Scenes dataset consists of multi-sequence RGB-D images, where
the spatial extent is less than 4 m. The Kinect sensor was used to capture
the image sequences, and the ground truths of the camera poses were
recorded using KinectFusion. The 12-Scenes dataset is very similar to 7-

Table 1
Parameter settings for FeatLoc architecture.

Feature Joining

Layer Name Feature dimension

MPL encoder 1 (E1) [2, 32, 64, 128, 256]
MPL encoder 2 (E2) [256, 2048]
Pose Regressor
FC1 + LeakyReLu [2048, 40]
FC2 [40, 3]
FC3 [40, 3]

T.B. Bach et al.

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

56

Scenes but has much larger indoor spaces.
To train our proposed network on different scenes of the datasets, we

leveraged the Hloc (Sarlin et al., 2019) toolbox to collect the training
data under sparse feature format. Hloc is a well-known modular toolbox
for state-of-the-art 6-DoF visual localization based on sparse features. It
implements hierarchical localization (Sarlin et al., 2019), leveraging
image retrieval and feature matching to localize accurate monocular
query images. We used Hloc for both extracting the feature descriptors
and constructing the 3D cloud map from image training samples.

To create the 3D cloud map and sparse features, SuperPoint (DeTone,
2018) and SuperGlue (Sarlin, 2020) were set as the default feature
extractor and matcher, relatively. The maximum number of features
extracted using SuperPoint was set as 2048. This process extracted the
sparse descriptors of both training and testing images. Note that Hloc
only uses the training images to generate the 3D cloud map while
extracting the features of test images for later evaluation.

4.3. Baselines

To validate the performance of our proposed FeatLoc, we compared
it with several state-of-the-art learning-based visual localization
methods. Because the 7-Scenes dataset has recently been evaluated
extensively as a benchmark (Kendall, 2015, 2016; Wang et al., 2020a,b;
Kendall, 2017; Brahmbhatt, 2018), comparing our method with those
prior state-of-the-art methods using the 7-Scenes dataset was an ideal
choice. We chose the following mainstream single-image-based methods
as our baselines: PoseNet Spatial-LSTM (Walch et al., 2017), AtLoc
(Wang et al., 2020a,b), MapNet (Brahmbhatt, 2018). It is worth
mentioning that SPPNet (Purkait et al., 2018) is the only DNN-based
approach, which learns from sparse features, as our method does. We
also report the performance of MapNet+ (Brahmbhatt, 2018), the state-
of-the-art method on this dataset using sequential image-based relocal
ization. Note that the sequential image-based approaches generally
perform better than single-image-based method. We nevertheless still
compare our approach with MapNet+ to examine how accurate our
FeatLoc learning is on single-image-based and augmented data. Lastly,
we report the performance of traditional metric localization on this
dataset compared with that of regressor-based approaches. We used two

state-of-the-art methods of feature extractor and feature matching,
which are SuperPoint (DeTone, 2018) and SuperGlue (Sarlin, 2020), to
produce the comparing results.

4.4. FeatLoc verification

This section verifies the FeatLoc architecture on learning with
different numbers of sparse descriptors to show its effects on perfor
mance. The sparse features obtained from the Hloc toolbox are then
separated into six different train-test datasets. Each dataset will have
different numbers of features as follows: 68, 126, 256, 512, 1024, and
2048. To refine a lower number of features in each dataset, we leveraged
the score values, which are the output of the SuperPoint feature
extractor. This score represents the evaluation of each detected key
point, ranging between 0 and 1, where a higher score represents a better
key point. Fig. 5 illustrates different number of key points after filtering
following the score values. The image example is taken from the third
sequence of the Chess dataset.

Table 4 shows the change of FeatLoc performance on those datasets.
It is clear that the performance of the regressor notably increases when
the number of input features increases. Interestingly, the dataset with
fewer features filtered with better scores has lower performance than
others. As seen from Table 4, the best relocalization results were ob
tained with the highest number of features, which is 2048. In Table 5, we
compare results of our FeatLoc with SPPNet (Purkait et al., 2018) when
learning on only training data. SPPNet also consumes sparse features for
its pose regression task. Our base architecture significantly out
performed SPPNet in this scenario. This reveals that the proposed
FeatLoc approach can effectively learn meaningful features from a set of
sparse descriptors for relocalization.

4.5. Learning with synthetic data

In this section, we present our experiment results on learning with
additional synthetic data. For the scenes with lower volumes, such as
Fire and Heads (2.5m3 and 1m3 respectively) we used the following
parameters to synthesize new viewpoints: d = 0.3m, α = 10, and
threshold = 1200. With the remaining scenes, we simply increased d to
d = 0.5m. Because our augmentation approach is much simpler
compared with that of SPPNet (Purkait et al., 2018) approach. It took
only approximately 8 min for a sequence of 1000 training samples, while
SPPNet required approximately two hours. Separately, generating a 3D
cloud map costs about 18 min for a sequence of 1000 images of 480x640
size. Note that all remaining experiments used the number key points set
as 2048.

Initially, we evaluated our base lightweight FeatLoc architecture
with only 0.7 million parameters on learning with both training and
synthetic data. However, the base FeatLoc faces overfitting when
learning with extensive additional data. This could be due to the
simplicity of this architecture. We thus increased the architecture
weights to 2.5 million parameters, as shown in Table 6 in detail. We call
this architecture FeatLoc+. We illustrate the results of FeatLoc (learning
with only training data) and FeatLoc+ (learning with both types of
data), which were evaluated on the most difficult scene, Stairs, in Fig. 6.
It can be seen that the improvement of FeatLoc+ (+augmentation)
compared with the base FeatLoc is not significant. The reason for this is
likely that FeatLoc’s base appears to not be very powerful in capturing
the local context of the synthetic data. To resolve this problem, we
replaced the encoder block E1 of the feature joining layer with a multi-
scale grouping set abstraction layer, which is the original in PointNet++

(Qi et al., 2017b). We call this improved architecture FeatLoc++.Fig. 6
also illustrates the results of FeatLoc++ when learning with both
training and synthetic data on the Stairs dataset. The results show that
FeatLoc++ adaptively learned to combine features from multi-scale
local contexts, thus leading to a significant improvement. Table 7 re
ports entire results of three FeatLoc variants when learning with and

Table 2
Parameter settings for FeatLoc++ architecture.

Feature Joining

MSG SA setting name Setting

Number output points 1024
Radius [0.025, 0.05, 0.1]
Number samples [32, 16, 8]
MPLs [[256, 64, 64, 128], [256, 128, 128,256],

[256, 128, 128,256]]
Layer Name Feature dimension
MPL encoder 2 (E2) [740, 2048]
Pose Regressor
FC1 + LeakyReLu [2048, 512]
FC2 + LeakyReLu [512, 256]
FC3 + LeakyReLu [256, 40]
FC2 [40, 3]
FC3 [40, 3]

Table 3
Comparison of the numbers of parameters (Note that SuperPoint (DeTone, 2018)
costs about 1.3 M parameters).

Method #param

SuperPoint (DeTone, 2018)& FeatLoc 2.0 M
SuperPoint (DeTone, 2018)& FeatLoc+ 3.8 M
SuperPoint (DeTone, 2018)& FeatLoc++ 4.1 M
Original PoseNet (GoogleNet) (Kendall, 2015) 8.9 M
Baseline (ResNet50) (Laskar, Melekhov, Kalia, & Kannala, 2017) 26.5 M

T.B. Bach et al.

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

57

without augmented data.
Finally, we compare our results of the FeatLoc++ architecture on all

seven scenes when learning with additional synthetic data with recent
state-of-the-art APR-based methods. The comparison results are listed in
Table 8, where FeatLoc++ significantly outperformed these APR-based
baselines.

4.6. Evaluation on 12-Scenes Dataset

In this section, we focus on localization on a larger indoor space, for
which we use a publicly available 12-Scenes dataset (Valentin, 2016).
This dataset was only used by DSAC++ (Brachmann, 2021) leading to a
lack of APR baselines for comparison. To solve this issue, we evaluate
this dataset with two recent state-of-the-art APR approaches PoseNet17
(Kendall, 2017) and MapNet (Brahmbhatt, 2018) as the baselines for
comparison with our FeatLoc. When training PoseNet17 and MapNet,
we set up the same configuration as illustrated in (Brahmbhatt, 2018).
Here, we only evaluate our best variant of FeatLoc, which is FeatLoc++.
The configuration for training FeatLoc++ was set as the same as above,
while the augmentation parameters are set as d = 0.5, α = 10, and
threshold = 1200. We also provide localization results of state-of-the-art
metric-based method (SuperPoint + SuperGlue) on this dataset. The
results in Table 9 show that we outperform previous APR-based ap
proaches by 40% in positional error and 14% in orientation error in
general. Fig. 7 shows the camera trajectories for several testing se
quences from the 12-Scenes dataset for MapNet and FeatLoc++Au (Au
means learning with augmented data, No means learning with only
training data). These experiment results validate the state-of-the-art of
our proposed FeatLoc as an effort to avoid overfitting for indoor APR
strategies.

5. Ablation study and efficiency evaluation

We conduct an ablation study on the FeatLoc results to examine how
robust they are when operating under changing conditions. We also
report the efficiency of the proposed method in two factors of storage
requirements and running time compared with that of related works.

Fig. 5. Illustration on different number of feature key points on the Chess scene dataset, where the fewer features are filtered with better scores.

Table 4
Comparison of the effect of number of feature points on the errors when learning
on the 7-Scenes dataset.

Number of
features

68 126 256 512 1024 2048

Chess 0.29 m,
11.6◦

0.36 m,
10.1◦

0.20 m,
8.21◦

0.18 m,
7.64◦

0.17 m,
7.45◦

0.16 m,
6.45◦

Fire 0.45 m,
16.5◦

0.40 m,
16.4◦

0.39 m,
14.4◦

0.37 m,
14.3◦

0.36 m,
14.7◦

0.36 m,
15.6◦

Heads 0.23 m,
16.4◦

0.19 m,
16.0◦

0.20 m,
15.1◦

0.19 m,
15.1◦

0.17 m,
14.6◦

0.17 m,
14.4◦

Office 0.42 m,
17.2◦

0.35 m,
14.5◦

0.31 m,
12.9◦

0.29 m,
11.3◦

0.26 m,
11.1◦

0.25 m,
10.3◦

Pumpkin 0.41 m,
12.5◦

0.35 m,
9.95◦

0.32 m,
8.44◦

0.28 m,
8.29◦

0.26 m,
8.21◦

0.24 m,
7.64◦

RedKitchen 0.53 m,
16.2◦

0.47 m,
13.7◦

0.42 m,
12.3◦

0.38 m,
10.8◦

0.34 m,
9.96◦

0.31 m,
8.91◦

Stairs 0.46 m,
14.7◦

0.44 m,
11.8◦

0.40 m,
10.6◦

0.38 m,
12.2◦

0.36 m,
12.6◦

0.33 m,
11.7◦

Average error 0.40 m,
15.0◦

0.37 m,
13.1◦

0.32 m,
11.7◦

0.30 m,
11.4◦

0.27 m,
11.2◦

0.26 m,
10.7◦

Table 5
Comparison with SPP-Net in terms of median localization error when learning
with no augmented data on 7-Scenes dataset.

Scene SPP-Net FeatLoc (ours)

Chess 0.22m,7.61◦ 0.16 m, 6.45◦

Fire 0.37 m, 14.1◦ 0.36 m, 15.6◦

Heads 0.22m,14.6◦ 0.17 m, 14.4◦

Office 0.32 m, 10.0◦ 0.25 m, 10.3◦

Pumpkin 0.47m,10.2◦ 0.24 m, 7.64◦

RedKitchen 0.34m,11.3◦ 0.31 m, 8.91◦

Stairs 0.40m,13.2◦ 0.33 m, 11.7◦

Average 0.33m,11.6◦ 0.26 m, 10.7◦

Table 6
Parameter settings for FeatLoc + architecture.

Layer Name Feature dimension

MPL encoder 1 (E1) [2, 32, 64, 128, 256]
MPL encoder 2 (E2) [256, 512, 2048]
FC1 + LeakyReLu [2048, 512]
FC2 + LeakyReLu [512, 256]
FC2 + LeakyReLu [256, 40]
FC2 [40, 3]
FC3 [40, 3]

T.B. Bach et al.

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

58

Finally, we provide an additional analysis of our method on an outdoor
dataset to understand how outdoor properties affect the proposed
method.

5.1. Changing testing condition

We evaluate two models of FeatLoc: FeatLoc++No and Feat
Loc++Au. Following the localization results in Table 8, we selected the
chess scene for this evaluation, since it has the localization error that is
nearly same as that of MapNet results (Brahmbhatt, 2018).

Effect of Brightness. Here we study the effect of brightness more

carefully by varying its magnitude. We expected that our models which
were learned on sparse features should be more robust compared to that
of direct-image-based approaches. To test this hypothesis, we linearly
interpolate between clean images (degree of brightness = 0) and more or
less brightness images (degree of brightness = 120 or − 120). Note that
this change of image was made before extracting 2D sparse features.
Fig. 8 illustrates the comparison results of our approach with recent
state-of-the-art methods on increasing degree of brightness. Fig. 9 also
shows that of results but decreasing brightness degree. Results shown in
these figures illustrate that our models are more robust to brightness
change compared with that of direct-RGB learning methods, even with
FeatLoc++No (model of learning without augmentation data).

Effect of Shadow Noise. To solid the results above, we study one
more noise type “shadow noise”. We randomly create shadow noise on
some parts of testing images. We then linearly interpolate between clean
images and completely shadow noise in testing images (transparency of
shadow ranges from 0.0 to 0.8 as shown in Fig. 10). Fig. 10 shows results
under changing shadow noise transparency. FeatLoc++ models achieve
more stable results than that of PoseNet (Kendall, 2017) and MapNet
(Brahmbhatt, 2018) under this type of noise.

5.2. System efficiency

To evaluate the efficiency of our proposed FeatLoc we analyze two
factors of storage requirement and running time. We compared FeatLoc
with traditional metric localization method (SuperPoint (DeTone, 2018)
Structure from Motion - SfM) and regressor-based method (MapNet
(Brahmbhatt, 2018)).

Storage Requirements. We report the storage requirements for each
method with respect to 7-Scenes dataset in the Table 10. The results
show that our method is more efficient in terms of memory re
quirements. It is very scalable and independent with both number of

Fig. 6. Camera localization results on the Stairs scene in the 7-Scenes dataset (Shotton et al., 2013). For each subfigure, the top 3D plot shows the camera trajectory
(green represents ground truth and red represents prediction), and the bottom bar charts show the comparison of location and orientation errors among MatNet
(Brahmbhatt, 2018) and our FeatLoc, FeatLoc+, and FeatLoc++. All results were obtained from single images, where FeatLoc results were obtained with only
training samples, while FeatLoc + and FeatLoc++ were trained on both training and augmented data. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 7
Comparison results of three FeatLoc versions when learning with and without
augmented data.

FeatLoc FeatLoc+ FeatLoc++

Chess 0.16 m, 6.45◦ 0.15 m, 6.62◦ 0.11 m, 7.56◦

Fire 0.36 m, 15.6◦ 0.38 m, 14.4◦ 0.32 m, 16.2◦

Heads 0.17 m, 14.4◦ 0.17 m, 15.0◦ 0.16 m, 15.7◦

Office 0.25 m, 10.3◦ 0.25 m, 9.19◦ 0.23 m, 10.6◦

Pumpkin 0.24 m, 7.64◦ 0.25 m, 8.53◦ 0.30 m, 8.90◦

RedKitchen 0.31 m, 8.91◦ 0.29 m, 9.05◦ 0.27 m, 11.2◦

Stairs 0.33 m, 11.7◦ 0.30 m, 12.7◦ 0.33 m, 12.1◦

Average error 0.26 m, 10.7◦ 0.26 m, 10.8◦ 24.6 m, 11.7◦

FeatLoc Au FeatLoc + Au FeatLoc++Au
Chess 0.21 m, 8.03◦ 0.21 m, 8.03◦ 0.07 m, 3.66◦

Fire 0.48 m, 11.9◦ 0.24 m, 8.22◦ 0.17 m, 5.95◦

Heads 0.20 m, 11.6◦ 0.14 m, 11.1◦ 0.10 m, 7.57◦

Office 0.29 m, 9.59◦ 0.26 m, 6.77◦ 0.16 m, 5.20◦

Pumpkin 0.14 m, 11.1◦ 0.22 m, 5.11◦ 0.11 m, 3.86◦

RedKitchen 0.36 m, 9.07◦ 0.31 m, 7.02◦ 0.20 m, 6.43◦

Stairs 0.37 m, 13.0◦ 0.25 m, 12.0◦ 0.16 m, 8.57◦

Average error 0.32 m, 9.90◦ 0.22 m, 7.85◦ 0.14 m, 5.89◦

T.B. Bach et al.

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

59

training samples and area of environments. In contrast, the metric
localization method requires a dramatic increase of memory alongside
with the increase of data size.

Running time. To evaluate this factor of efficiency, we analyze three
methods, our FeatLoc, MapNet (Brahmbhatt, 2018) and metric locali
zation method. Along with these methods, MapNet requires about 9.4
ms to compute camera pose for a single image. Our FeatLoc++

consumes approximately 5 ms per frame from the 2D sparse feature (in
total it consumes around 14 ms, since extracting feature using Super
Point already takes 9 ms for the image size of 480x640). In contrast to
regressor-based methods, the metric localization approach requires
minutes to compute each camera pose and the running time scales O (n)
with training data size (Wu, 2013; Kendall, 2015), as it needs to process
many additional steps before the camera poses being computed, such as

Table 8
Comparison of median localization errors with existing APR-based and metric localization approach on 7-Scenes dataset.

Metric-based APR-based
SuperPoint (DeTone,
2018)

Scene Area or
Volume

+SuperGlue (Sarlin,
2020)

MapNet (Brahmbhatt,
2018)

MapNet+ (Brahmbhatt,
2018)

AtLoc (Wang et al.,
2020a,b)

SPP-Net (Purkait
et al., 2018)

FeatLoc++Au
(ours)

Chess 6 m3 0.02 m, 0.84◦ 0.08 m, 3.25◦ 0.10 m, 3.17◦ 0.10 m, 4.07◦ 0.12 m, 4.42◦ 0.07 m, 3.66◦

Fire 2.5 m3 0.02 m, 0.93◦ 0.27 m, 11.7◦ 0.20 m, 9.04◦ 0.25 m, 11.4◦ 0.22 m, 8.84◦ 0.17 m, 5.95◦

Heads 1 m3 0.01 m, 0.74◦ 0.18 m, 13.2◦ 0.13 m, 11.1◦ 0.16 m, 11.8◦ 0.11 m, 8.33◦ 0.10 m, 7.57◦

Office 7.5 m3 0.03 m, 0.92◦ 0.17 m, 5.15◦ 0.18 m, 5.38◦ 0.17 m, 5.34◦ 0.16 m, 4.99◦ 0.16 m, 5.20◦

Pumpkin 5 m3 0.05 m, 1.27◦ 0.22 m, 4.02◦ 0.19 m, 3.92◦ 0.21 m, 4.37◦ 0.21 m, 4.89◦ 0.11 m, 3.86◦

RedKitchen 18 m3 0.05 m, 1.40◦ 0.23 m, 4.93◦ 0.20 m, 5.01◦ 0.23 m, 5.42◦ 0.21 m, 4.76◦ 0.20 m, 6.43◦

Stairs 7.5 m3 0.05 m, 1.57◦ 0.30 m, 12.1◦ 0.30 m, 13.4◦ 0.26 m, 10.5◦ 0.22 m, 7.17◦ 0.16 m, 8.57◦

Average 6.8 m3 0.03 m, 1.09◦ 0.21 m, 7.77◦ 0.19 m, 7.29◦ 0.20 m, 7.56◦ 0.18 m, 6.20◦ 0.14 m, 5.89◦

Table 9
Comparison of median localization errors with existing APR-based and metric localization approach on 12-Scenes dataset.

Metric-based APR-based
SuperPoint (DeTone, 2018)

Scene Area or Volume +SuperGlue (Sarlin, 2020) PoseNet (Kendall, 2017) MapNet (Brahmbhatt, 2018) FeatLoc++No
(ours)

FeatLoc++Au
(ours)

apt1_kitchen 33 m ◦ 0.02 m, 0.20◦ 0.62 m, 6.75◦ 0.48 m, 5.28◦ 0.53 m, 14.0◦ 0.32 m, 5.19◦

apt1_living 30 m3 0.02 m, 0.18◦ 0.61 m, 6.03◦ 0.50 m, 4.84◦ 0.55 m, 9.75◦ 0.26 m, 3.89◦

apt2_bed 14 m3 0.02 m, 0.29◦ 0.65 m, 5.66◦ 0.58 m, 6.02◦ 0.60 m, 10.2◦ 0.37 m, 5.39◦

apt2_kitchen 21 m3 0.05 m, 0.20◦ 1.24 m, 6.84◦ 1.18 m, 6.18◦ 1.21 m, 29.1◦ 0.73 m, 6.37◦

apt2_living 42 m3 0.03 m, 0.21◦ 0.78 m, 7.61◦ 0.65 m, 7.20◦ 0.73 m, 11.4◦ 0.40 m, 5.71◦

apt2_luke 53 m3 0.02 m, 0.28◦ 0.66 m, 7.10◦ 0.49 m, 6.66◦ 0.59 m, 11.4◦ 0.33 m, 4.85◦

office1_gates362 29 m3 0.04 m, 0.24◦ 1.05 m, 5.67◦ 0.91 m, 5.50◦ 1.03 m, 8.95◦ 0.52 m, 5.22◦

office1_gates381 44 m3 0.02 m, 0.23◦ 0.70 m, 8.23◦ 0.62 m, 7.96◦ 0.73 m, 12.9◦ 0.42 m, 6.23◦

office1_lounge 38 m3 0.03 m, 0.22◦ 0.77 m, 7.35◦ 0.56 m, 6.0◦ 0.97 m, 8.30◦ 0.39 m, 4.50◦

office1_manolis 50 m3 0.02 m, 0.27◦ 0.64 m, 6.56◦ 0.54 m, 5.25◦ 0.66 m, 11.9◦ 0.30 m, 4.67◦

office2_5a 38 m3 0.02 m, 0.23◦ 0.59 m, 5.65◦ 0.54 m, 5.48◦ 0.61 m, 8.05◦ 0.31 m, 4.32◦

office2_5b 79 m3 0.02 m, 0.17◦ 0.52 m, 4.32◦ 0.47 m, 3.80◦ 0.51 m, 7.29◦ 0.23 m, 4.14◦

Average 39 m3 0.03 m, 0.23◦ 0.74 m, 6.48◦ 0.63 m, 5.85◦ 0.73 m, 11.9◦ 0.38 m, 5.04◦

Fig. 7. Camera localization results on 12-Scenes dataset. For each subfigure, the 3D plot shows the camera trajectory (green for the ground truth and red for the
prediction). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

T.B. Bach et al.

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

60

matching 2D-3D features, filtering good ones, etc.

5.3. FeatLoc for outdoor

In this section, we provide an additional evaluation of FeatLoc
approach on an outdoor dataset Cambridge (Kendall, 2015) to analyze
how accurate it is when applying to outdoor scenarios. For experiments
on this dataset, we use the same configuration for training the network
while the augmentation parameters are set as d = 2.0, α = 15, and
threshold = 1200. Note that for the outdoor scenes, we only synthesize
pose along the detected horizontal plane. As we can see in Table 11, our
method outperforms PoseNet (Kendall, 2015) in terms of translation
error. However, they are just comparable with that of SPPNet (Purkait
et al., 2018). The reasons come from our simplistic data augmentation
technique. It is only robust for indoor environments that consist of more
trustable features while the outdoor scenes contain various kinds of
noise and less trustable ones. In order to continuously synthesize out
door data, it is necessary to re-project the entire 3D cloud map onto a
single augmented image plane with some additional preprocessing steps
before obtaining the final reliable ones, as is done in (Purkait et al.,

2018). In this work, however, we have proved that this labor-intensive
procedure is not necessary for indoor scenarios.

6. Discussion

This section explains why FeatLoc++ is better than FeatLoc when
learning with additional synthetic data. The initial FeatLoc version only
inherits the symmetric function theory of PointNet (Qi et al. (2017a)),
while FeatLoc++ additionally leverages the hierarchical point set
feature learning of PointNet++ (Qi et al., 2017b). It has been proved
that the original PointNet architecture does not capture the local
structure induced in metric spaces of cloud point data (Qi et al., 2017b).
The initial FeatLoc is thus limited in its ability to generalize to synthetic
training data. In addition, due to the simplicity of our data augmentation
approach, the synthesized samples only remain as separate features of
the original images. In the testing phase, however, the new extracted
features of test images will have many additional different sparse de
scriptors, which makes it difficult for FeatLoc to learn and capture the
local context of the new synthesized data. Note that the augmented data
retain most of the information from the original images while changing

Fig. 8. Effect of Increasing Brightness. Two versions of FeatLoc++ (FeatLoc++No means learning without addition of augmented data and FeatLoc++Au means
learning with addition of augmented data) compared to three recent state-of-the-arts localization models PoseNet17 (Kendall, 2017), MapNet, MapNet+
(Brahmbhatt, 2018). The FeatLoc models outperform the direct-image-based models in terms of presence of brightness.

Fig. 9. Effect of Decreasing Brightness.

T.B. Bach et al.

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

61

only the position and distribution of sparse descriptors. Therefore,
FeatLoc performs well on the training data while facing overfitting when
learning with both training and synthesized data.

7. Conclusion

This paper proposed a novel approach for regressing the global 6-
DoF camera pose from sparse feature descriptors for indoor environ
ments. Our contributions can be summarized as follows:

• We addressed the domain adaption problem in absolute pose
regression by augmenting additional training. The augmented data
may cover the poses in the regions not available in the training data.

• We proposed an architecture that can directly consume sparse
feature descriptors and showed its effectiveness compared to state-
of-the-art methods.

• The proposed data augmentation method is a relatively simple but
efficient technique for generating an unlimited amount of synthetic
training data based on a 3D cloud map.

• We performed extensive experiments to validate our architecture
and the proposed augmentation method. The results demonstrate
that our method outperforms state-of-the-art APR-based approaches
in terms of indoor scenarios.

• We have verified that learning from sparse feature can encourage the
framework mitigating the impacts from changing illumination or
gradual change of environments.

However, this study still consists of several limitations:

• Proposed method relies on sparse features, it might be less robust
when working under less contextual environments.

• Although the proposed augmentation strategy is rather simple, it
might be limited to environments where having less trustable fea
tures such as outdoor scenarios.

In future work, we plan to investigate the feasibility of improving the
network architecture to understand the invariance in descriptors when
changing the viewpoint. If the network can reveal the properties of
matched descriptors, the performance could be remarkably improved
and comparable with that of geometry-based approaches. In addition,
we plan to enhance the method’s ability to work under dynamic and less
contextual environments.

Fig. 10. Effect of Shadow Noise.

Table 10
Comparison of storage requirements on 7-Scenes (Shotton et al., 2013) dataset. We compared three methods of SuperPoint Structure from Motion (SfM), MapNet
(Brahmbhatt, 2018), and our proposed FeatLoc++ (included SuperPoint’s weight of 5.2 MB).

Area or #training SuperPoint (DeTone, 2018) MapNet (Brahmbhatt, 2018) SuperPoint (DeTone, 2018) &

Scene Volume samples SfM FeatLoc++(ours)

Heads 1 m3 1000 1.12 GB 268.3 MB 38.8 MB
Fire 2.5 m3 2000 2.30 GB 268.3 MB 38.8 MB
Stairs 7.5 m3 2000 2.27 GB 268.3 MB 38.8 MB
Pumpkin 5 m3 4000 4.55 GB 268.3 MB 38.8 MB
Chess 6 m3 4000 4.55 GB 268.3 MB 38.8 MB
Office 7.5 m3 6000 6.85 GB 268.3 MB 38.8 MB
RedKitchen 18 m3 7000 7.98 GB 268.3 MB 38.8 MB

Table 11
Comparison of median localization errors on outdoor Cambridge dataset.

Scene Area or
Volume

PoseNet (
Kendall, 2015)

FeatLoc++Au
(Ours)

SPPNet (with
synthesis data)
(Purkait et al.,
2018)

King’s
College

5600 m 1.66 m, 4.86◦ 1.30 m, 3.84◦ 0.74 m, 0.96◦

Old
Hospital

2000 m2 2.62 m, 4.90◦ 2.05 m, 6.06◦ 2.18 m, 3.92◦

Shop
Facade

875 m2 1.41 m, 7.18◦ 0.91 m, 7.50◦ 0.59 m, 2.53◦

StMary’s
Church

4800 m2 2.45 m, 7.96◦ 2.99 m, 10.4◦ 1.83 m, 3.35◦◦

T.B. Bach et al.

ISPRS Journal of Photogrammetry and Remote Sensing 189 (2022) 50–62

62

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

Albl, C., Kukelova, Z., Pajdla, T., 2015. R6p-rolling shutter absolute camera pose. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2292–2300.

Brachmann, E.K., 2017. Dsac-differentiable ransac for camera localization. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 6684–6692.

Brachmann, E., Rother, C., 2018. Learning less is more-6d camera localization via 3d
surface regression. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4654–4662.

Brachmann, E., Michel, F., Krull, A., Yang, M.Y., Gumhold, S., et al., 2016. Uncertainty-
driven 6d pose estimation of objects and scenes from a single rgb image. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3364–3372.

Brahmbhatt, S.G., 2018. Geometry-aware learning of maps for camera localization. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2616–2625.

Castle, R.K., 2008. Video-rate localization in multiple maps for wearable augmented
reality. In: 2008 12th IEEE International Symposium on Wearable Computers,
pp. 15–22.

Chum, O., Matas, J., 2008. Optimal randomized RANSAC. IEEE Trans. Pattern Anal.
Mach. Intell. 30 (8), 1472–1482.

DeTone, D.T., 2018. Superpoint: Self-supervised interest point detection and description.
In: Proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pp. 224–236.

Donoser, M.S., 2014. Discriminative Featureto-Point Matching in Image-Based
Locallization. CVPR.

Häne, C., Heng, L., Lee, G.H., Fraundorfer, F., Furgale, P., Sattler, T., Pollefeys, M., 2017.
3D visual perception for self-driving cars using a multi-camera system: Calibration,
mapping, localization, and obstacle detection. Image Vis. Comput. 68, 14–27.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778.

Huang, Z., Xu, Y., Shi, J., Zhou, X., Bao, H., Zhang, G., 2019. Prior guided dropout for
robust visual localization in dynamic environments. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 2791–2800.

Hyeon, J., Kim, J., Doh, N., 2021. Pose Correction for Highly Accurate Visual
Localization in Large-scale Indoor Spaces. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15974–15983.

Irschara, A., Zach, C., Frahm, J.-M., Bischof, H., 2009. From structure-from-motion point
clouds to fast location recognition. In: 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2599–2606.

Juan, L., Gwun, O., 2009. A comparison of sift, pca-sift and surf. Int. J. Image Process.
(IJIP) 3, 143–152.

Kendall, A., 2016. Modelling uncertainty in deep learning for camera relocalization. In:
2016 IEEE international conference on Robotics and Automation (ICRA),
pp. 4762–4769.

Kendall, A., 2017. Geometric loss functions for camera pose regression with deep
learning. In: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5974–5983.

Kendall, A.G., 2015. Posenet: A convolutional network for real-time 6-dof camera
relocalization. In: Proceedings of the IEEE international conference on computer
vision, pp. 2938–2946.

Ketkar, N., 2017. Introduction to pytorch. In: Ketkar, N. (Ed.), Deep Learning with
Python. Apress, Berkeley, CA, pp. 195–208.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kneip, L., Scaramuzza, D., Siegwart, R., 2011. A novel parametrization of the
perspective-three-point problem for a direct computation of absolute camera
position and orientation. In: CVPR 2011, pp. 2969–2976.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep
convolutional neural networks. Adv. Neural Inform. Process. Syst. 25, 1097–1105.

Laskar, Z., Melekhov, I., Kalia, S., Kannala, J., 2017. Camera relocalization by computing
pairwise relative poses using convolutional neural network. In: Proceedings of the
IEEE International Conference on Computer Vision Workshops, pp. 929–938.

Li, Y.S., 2012. Worldwide pose estimation using 3d point clouds. In: European conference
on computer vision, pp. 15–29.

Li, Y., Snavely, N., Huttenlocher, D.P., 2010. Location recognition using prioritized
feature matching. In: European conference on computer vision, pp. 791–804.

Lim, H., Sinha, S.N., Cohen, M.F., Uyttendaele, M., Kim, H.J., 2015. Real-time monocular
image-based 6-DoF localization. Int. J. Robot. Res. 34 (4-5), 476–492.

Liu, X., Qi, C.R., Guibas, L.J., 2019. Flownet3d: Learning scene flow in 3d point clouds.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 529–537.

Lowe, D.G., 2004. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision 60 (2), 91–110.

Luo, Z., Zhou, L., Bai, X., Chen, H., Zhang, J., Yao, Y., Quan, L., 2020. Aslfeat: Learning
local features of accurate shape and localization. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 6589–6598.

Melekhov, I., Ylioinas, J., Kannala, J., Rahtu, E., 2017. Image-based localization using
hourglass networks. In: Proceedings of the IEEE international conference on
computer vision workshops, pp. 879–886.

Meng, L., Chen, J., Tung, F., Little, J.J., Valentin, J., de Silva, C.W., 2017. Backtracking
regression forests for accurate camera relocalization. In: 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 6886–6893.

Meng, L., Tung, F., Little, J.J., Valentin, J., de Silva, C.W., 2018. Exploiting points and
lines in regression forests for RGB-D camera relocalization. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 6827–6834.

Naseer, T., Burgard, W., 2017. Deep regression for monocular camera-based 6-dof global
localization in outdoor environments. In: 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 1525–1530.

Purkait, P., Zhao, C., Zach, C., 2018. Synthetic View Generation for Absolute Pose
Regression and Image. Synthesis BMVC, (p. 69).

Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2017a. Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660.

Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. arXiv preprint arXiv:1706.02413.

Radwan, N., Valada, A., Burgard, W., 2018. Vlocnet++: Deep multitask learning for
semantic visual localization and odometry. IEEE Rob. Autom. Lett. 3 (4),
4407–4414.

Sarlin, P.E., 2020. Superglue: Learning feature matching with graph neural networks. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4938–4947.

Sarlin, P.-E., Cadena, C., Siegwart, R., Dymczyk, M., 2019. From Coarse to Fine: Robust
Hierarchical Localization at Large Scale. CVPR.

Sattler, T.L., 2011. Fast image-based localization using direct 2d-to-3d matching. In:
2011 International Conference on Computer Vision, pp. 667–674.

Sattler, T.L., 2016. Efficient & effective prioritized matching for large-scale image-based
localization. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1744–1756.

Sattler, T., Torii, A., Sivic, J., Pollefeys, M., Taira, H., Okutomi, M., Pajdla, T., 2017. Are
large-scale 3d models really necessary for accurate visual localization?. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1637–1646.

Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixe, L., 2019. Understanding the limitations of
cnn-based absolute camera pose regression. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 3302–3312.

Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A., 2013. Scene
coordinate regression forests for camera relocalization in RGB-D images. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2930–2937.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A., 2015.
Going deeper with convolutions. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1–9.

Valada, A., Radwan, N., Burgard, W., 2018. Deep auxiliary learning for visual
localization and odometry. In: 2018 IEEE international conference on robotics and
automation (ICRA), pp. 6939–6946.

Valentin, J.D., 2016. Learning to navigate the energy landscape. In: In 2016 Fourth
International Conference on 3D Vision (3DV), pp. 323–332.

Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., Cremers, D., 2017.
Image-based localization using lstms for structured feature correlation. In:
Proceedings of the IEEE International Conference on Computer Vision, pp. 627–637.

Wang, B., Chen, C., Lu, C.X., Zhao, P., Trigoni, N., Markham, A., 2020a. Atloc: Attention
guided camera localization. Proceedings of the AAAI Conference on Artificial
Intelligence vol. 34, 10393–10401.

Wang, W., Wang, B., Zhao, P., Chen, C., Clark, R., Yang, B., Trigoni, N., et al., 2020.
Pointloc: Deep pose regressor for lidar point cloud localization. arXiv preprint arXiv:
2003.02392.

Wu, C., 2013. Towards linear-time incremental structure from motion. In: 2013
International Conference on 3D Vision-3DV 2013, pp. 127–134.

Zhang, W., Kosecka, J., 2006. Image based localization in urban environments. In: Third
international symposium on 3D data processing, visualization, and transmission
(3DPVT’06), pp. 33–40.

Zheng, T., Chen, C., Yuan, J., Li, B., Ren, K., 2019. Pointcloud saliency maps. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 1598–1606.

Zhou, K., Chen, C., Wang, B., Saputra, M.R., Trigoni, N., Markham, A., 2021. VMLoc:
Variational Fusion For Learning-Based Multimodal Camera Localization.
Proceedings of the AAAI Conference on Artificial Intelligence vol. 35, 6165–6173.

T.B. Bach et al.

http://refhub.elsevier.com/S0924-2716(22)00124-1/h0005
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0005
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0005
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0010
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0010
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0010
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0015
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0015
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0015
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0020
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0020
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0020
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0020
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0025
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0025
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0025
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0030
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0030
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0030
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0035
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0035
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0040
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0040
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0040
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0045
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0045
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0050
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0050
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0050
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0055
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0055
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0055
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0060
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0060
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0060
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0065
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0065
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0065
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0070
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0070
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0070
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0075
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0075
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0080
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0080
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0080
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0085
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0085
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0085
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0090
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0090
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0090
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0095
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0095
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0105
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0105
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0105
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0110
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0110
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0115
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0115
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0115
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0120
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0120
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0125
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0125
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0130
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0130
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0135
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0135
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0135
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0140
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0140
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0145
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0145
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0145
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0150
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0150
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0150
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0155
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0155
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0155
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0160
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0160
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0160
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0165
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0165
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0165
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0170
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0170
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0175
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0175
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0175
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0185
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0185
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0185
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0190
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0190
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0190
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0195
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0195
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0200
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0200
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0205
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0205
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0210
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0210
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0210
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0210
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0215
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0215
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0215
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0220
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0220
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0220
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0220
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0230
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0230
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0230
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0235
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0235
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0235
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0240
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0240
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0245
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0245
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0245
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0250
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0250
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0250
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0260
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0260
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0265
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0265
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0265
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0270
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0270
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0270
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0275
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0275
http://refhub.elsevier.com/S0924-2716(22)00124-1/h0275

	FeatLoc: Absolute pose regressor for indoor 2D sparse features with simplistic view synthesizing
	1 Introduction
	2 Related work
	2.1 Structure-based localization
	2.2 Deep neural networks for camera localization
	2.3 Feature extractors for deep camera pose regressor

	3 Proposed approach
	3.1 Problem statement
	3.2 Base architecture of FeatLoc
	3.2.1 Feature Pre-processing: input layer
	3.2.2 Feature joining layer
	3.2.3 Regressor block and loss function

	3.3 Data augmentation
	3.4 Comparisons to related work

	4 Experimental evaluation
	4.1 Implementation details
	4.2 Dataset description and pre-processing
	4.3 Baselines
	4.4 FeatLoc verification
	4.5 Learning with synthetic data
	4.6 Evaluation on 12-Scenes Dataset

	5 Ablation study and efficiency evaluation
	5.1 Changing testing condition
	5.2 System efficiency
	5.3 FeatLoc for outdoor

	6 Discussion
	7 Conclusion
	Declaration of Competing Interest
	References

